On the essential minimum modulus of linear operators in Banach spaces
Abstract We shall show in this paper a quite useful formula connecting the essential minimum modulus and minimum modulus of any linear bounded operator defined on a separable Hilbert space. Since this formula does not depend on the structure of Hilbert space, this result enables us to define the ess...
Ausführliche Beschreibung
Autor*in: |
Skhiri, Haïkel [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2016 |
---|
Anmerkung: |
© Bolyai Institute, University of Szeged 2016 |
---|
Übergeordnetes Werk: |
Enthalten in: Acta scientiarum mathematicarum - Springer International Publishing, 1941, 82(2016), 1-2 vom: 01. Juni, Seite 147-164 |
---|---|
Übergeordnetes Werk: |
volume:82 ; year:2016 ; number:1-2 ; day:01 ; month:06 ; pages:147-164 |
Links: |
---|
DOI / URN: |
10.14232/actasm-014-538-8 |
---|
Katalog-ID: |
OLC2077684666 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2077684666 | ||
003 | DE-627 | ||
005 | 20230505185257.0 | ||
007 | tu | ||
008 | 221220s2016 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.14232/actasm-014-538-8 |2 doi | |
035 | |a (DE-627)OLC2077684666 | ||
035 | |a (DE-He213)actasm-014-538-8-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a 31.00 |2 bkl | ||
100 | 1 | |a Skhiri, Haïkel |e verfasserin |4 aut | |
245 | 1 | 0 | |a On the essential minimum modulus of linear operators in Banach spaces |
264 | 1 | |c 2016 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Bolyai Institute, University of Szeged 2016 | ||
520 | |a Abstract We shall show in this paper a quite useful formula connecting the essential minimum modulus and minimum modulus of any linear bounded operator defined on a separable Hilbert space. Since this formula does not depend on the structure of Hilbert space, this result enables us to define the essential minimum modulus of linear operators in the more general context of Banach spaces. The connection between our definition and that given by Zemánek [Geometric interpretation of the essential minimum modulus, Operator Theory: Adv. Appl., 6, (1982), 225–227] is discussed. Moreover, the notion of the essential surjectivity modulus and left (resp. right) essential minimum modulus on Banach spaces are also defined and will be studied in this paper. The asymptotic formula for the essential spectrum of a semi-Fredholm operator with index zero in terms of the left and right essential minimum moduli is proved. | ||
773 | 0 | 8 | |i Enthalten in |t Acta scientiarum mathematicarum |d Springer International Publishing, 1941 |g 82(2016), 1-2 vom: 01. Juni, Seite 147-164 |w (DE-627)129476382 |w (DE-600)203491-8 |w (DE-576)014855984 |x 0001-6969 |7 nnns |
773 | 1 | 8 | |g volume:82 |g year:2016 |g number:1-2 |g day:01 |g month:06 |g pages:147-164 |
856 | 4 | 1 | |u https://doi.org/10.14232/actasm-014-538-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-FIN | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_62 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_2005 | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_2021 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4306 | ||
912 | |a GBV_ILN_4310 | ||
912 | |a GBV_ILN_4318 | ||
936 | b | k | |a 31.00 |q VZ |
951 | |a AR | ||
952 | |d 82 |j 2016 |e 1-2 |b 01 |c 06 |h 147-164 |
author_variant |
h s hs |
---|---|
matchkey_str |
article:00016969:2016----::nhesniliiumdlsfierprt |
hierarchy_sort_str |
2016 |
bklnumber |
31.00 |
publishDate |
2016 |
allfields |
10.14232/actasm-014-538-8 doi (DE-627)OLC2077684666 (DE-He213)actasm-014-538-8-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Skhiri, Haïkel verfasserin aut On the essential minimum modulus of linear operators in Banach spaces 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Bolyai Institute, University of Szeged 2016 Abstract We shall show in this paper a quite useful formula connecting the essential minimum modulus and minimum modulus of any linear bounded operator defined on a separable Hilbert space. Since this formula does not depend on the structure of Hilbert space, this result enables us to define the essential minimum modulus of linear operators in the more general context of Banach spaces. The connection between our definition and that given by Zemánek [Geometric interpretation of the essential minimum modulus, Operator Theory: Adv. Appl., 6, (1982), 225–227] is discussed. Moreover, the notion of the essential surjectivity modulus and left (resp. right) essential minimum modulus on Banach spaces are also defined and will be studied in this paper. The asymptotic formula for the essential spectrum of a semi-Fredholm operator with index zero in terms of the left and right essential minimum moduli is proved. Enthalten in Acta scientiarum mathematicarum Springer International Publishing, 1941 82(2016), 1-2 vom: 01. Juni, Seite 147-164 (DE-627)129476382 (DE-600)203491-8 (DE-576)014855984 0001-6969 nnns volume:82 year:2016 number:1-2 day:01 month:06 pages:147-164 https://doi.org/10.14232/actasm-014-538-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-FIN SSG-OPC-MAT GBV_ILN_22 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4036 GBV_ILN_4306 GBV_ILN_4310 GBV_ILN_4318 31.00 VZ AR 82 2016 1-2 01 06 147-164 |
spelling |
10.14232/actasm-014-538-8 doi (DE-627)OLC2077684666 (DE-He213)actasm-014-538-8-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Skhiri, Haïkel verfasserin aut On the essential minimum modulus of linear operators in Banach spaces 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Bolyai Institute, University of Szeged 2016 Abstract We shall show in this paper a quite useful formula connecting the essential minimum modulus and minimum modulus of any linear bounded operator defined on a separable Hilbert space. Since this formula does not depend on the structure of Hilbert space, this result enables us to define the essential minimum modulus of linear operators in the more general context of Banach spaces. The connection between our definition and that given by Zemánek [Geometric interpretation of the essential minimum modulus, Operator Theory: Adv. Appl., 6, (1982), 225–227] is discussed. Moreover, the notion of the essential surjectivity modulus and left (resp. right) essential minimum modulus on Banach spaces are also defined and will be studied in this paper. The asymptotic formula for the essential spectrum of a semi-Fredholm operator with index zero in terms of the left and right essential minimum moduli is proved. Enthalten in Acta scientiarum mathematicarum Springer International Publishing, 1941 82(2016), 1-2 vom: 01. Juni, Seite 147-164 (DE-627)129476382 (DE-600)203491-8 (DE-576)014855984 0001-6969 nnns volume:82 year:2016 number:1-2 day:01 month:06 pages:147-164 https://doi.org/10.14232/actasm-014-538-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-FIN SSG-OPC-MAT GBV_ILN_22 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4036 GBV_ILN_4306 GBV_ILN_4310 GBV_ILN_4318 31.00 VZ AR 82 2016 1-2 01 06 147-164 |
allfields_unstemmed |
10.14232/actasm-014-538-8 doi (DE-627)OLC2077684666 (DE-He213)actasm-014-538-8-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Skhiri, Haïkel verfasserin aut On the essential minimum modulus of linear operators in Banach spaces 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Bolyai Institute, University of Szeged 2016 Abstract We shall show in this paper a quite useful formula connecting the essential minimum modulus and minimum modulus of any linear bounded operator defined on a separable Hilbert space. Since this formula does not depend on the structure of Hilbert space, this result enables us to define the essential minimum modulus of linear operators in the more general context of Banach spaces. The connection between our definition and that given by Zemánek [Geometric interpretation of the essential minimum modulus, Operator Theory: Adv. Appl., 6, (1982), 225–227] is discussed. Moreover, the notion of the essential surjectivity modulus and left (resp. right) essential minimum modulus on Banach spaces are also defined and will be studied in this paper. The asymptotic formula for the essential spectrum of a semi-Fredholm operator with index zero in terms of the left and right essential minimum moduli is proved. Enthalten in Acta scientiarum mathematicarum Springer International Publishing, 1941 82(2016), 1-2 vom: 01. Juni, Seite 147-164 (DE-627)129476382 (DE-600)203491-8 (DE-576)014855984 0001-6969 nnns volume:82 year:2016 number:1-2 day:01 month:06 pages:147-164 https://doi.org/10.14232/actasm-014-538-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-FIN SSG-OPC-MAT GBV_ILN_22 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4036 GBV_ILN_4306 GBV_ILN_4310 GBV_ILN_4318 31.00 VZ AR 82 2016 1-2 01 06 147-164 |
allfieldsGer |
10.14232/actasm-014-538-8 doi (DE-627)OLC2077684666 (DE-He213)actasm-014-538-8-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Skhiri, Haïkel verfasserin aut On the essential minimum modulus of linear operators in Banach spaces 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Bolyai Institute, University of Szeged 2016 Abstract We shall show in this paper a quite useful formula connecting the essential minimum modulus and minimum modulus of any linear bounded operator defined on a separable Hilbert space. Since this formula does not depend on the structure of Hilbert space, this result enables us to define the essential minimum modulus of linear operators in the more general context of Banach spaces. The connection between our definition and that given by Zemánek [Geometric interpretation of the essential minimum modulus, Operator Theory: Adv. Appl., 6, (1982), 225–227] is discussed. Moreover, the notion of the essential surjectivity modulus and left (resp. right) essential minimum modulus on Banach spaces are also defined and will be studied in this paper. The asymptotic formula for the essential spectrum of a semi-Fredholm operator with index zero in terms of the left and right essential minimum moduli is proved. Enthalten in Acta scientiarum mathematicarum Springer International Publishing, 1941 82(2016), 1-2 vom: 01. Juni, Seite 147-164 (DE-627)129476382 (DE-600)203491-8 (DE-576)014855984 0001-6969 nnns volume:82 year:2016 number:1-2 day:01 month:06 pages:147-164 https://doi.org/10.14232/actasm-014-538-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-FIN SSG-OPC-MAT GBV_ILN_22 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4036 GBV_ILN_4306 GBV_ILN_4310 GBV_ILN_4318 31.00 VZ AR 82 2016 1-2 01 06 147-164 |
allfieldsSound |
10.14232/actasm-014-538-8 doi (DE-627)OLC2077684666 (DE-He213)actasm-014-538-8-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn 31.00 bkl Skhiri, Haïkel verfasserin aut On the essential minimum modulus of linear operators in Banach spaces 2016 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Bolyai Institute, University of Szeged 2016 Abstract We shall show in this paper a quite useful formula connecting the essential minimum modulus and minimum modulus of any linear bounded operator defined on a separable Hilbert space. Since this formula does not depend on the structure of Hilbert space, this result enables us to define the essential minimum modulus of linear operators in the more general context of Banach spaces. The connection between our definition and that given by Zemánek [Geometric interpretation of the essential minimum modulus, Operator Theory: Adv. Appl., 6, (1982), 225–227] is discussed. Moreover, the notion of the essential surjectivity modulus and left (resp. right) essential minimum modulus on Banach spaces are also defined and will be studied in this paper. The asymptotic formula for the essential spectrum of a semi-Fredholm operator with index zero in terms of the left and right essential minimum moduli is proved. Enthalten in Acta scientiarum mathematicarum Springer International Publishing, 1941 82(2016), 1-2 vom: 01. Juni, Seite 147-164 (DE-627)129476382 (DE-600)203491-8 (DE-576)014855984 0001-6969 nnns volume:82 year:2016 number:1-2 day:01 month:06 pages:147-164 https://doi.org/10.14232/actasm-014-538-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-FIN SSG-OPC-MAT GBV_ILN_22 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4036 GBV_ILN_4306 GBV_ILN_4310 GBV_ILN_4318 31.00 VZ AR 82 2016 1-2 01 06 147-164 |
language |
English |
source |
Enthalten in Acta scientiarum mathematicarum 82(2016), 1-2 vom: 01. Juni, Seite 147-164 volume:82 year:2016 number:1-2 day:01 month:06 pages:147-164 |
sourceStr |
Enthalten in Acta scientiarum mathematicarum 82(2016), 1-2 vom: 01. Juni, Seite 147-164 volume:82 year:2016 number:1-2 day:01 month:06 pages:147-164 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Acta scientiarum mathematicarum |
authorswithroles_txt_mv |
Skhiri, Haïkel @@aut@@ |
publishDateDaySort_date |
2016-06-01T00:00:00Z |
hierarchy_top_id |
129476382 |
dewey-sort |
3510 |
id |
OLC2077684666 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2077684666</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505185257.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.14232/actasm-014-538-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2077684666</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)actasm-014-538-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Skhiri, Haïkel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the essential minimum modulus of linear operators in Banach spaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Bolyai Institute, University of Szeged 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We shall show in this paper a quite useful formula connecting the essential minimum modulus and minimum modulus of any linear bounded operator defined on a separable Hilbert space. Since this formula does not depend on the structure of Hilbert space, this result enables us to define the essential minimum modulus of linear operators in the more general context of Banach spaces. The connection between our definition and that given by Zemánek [Geometric interpretation of the essential minimum modulus, Operator Theory: Adv. Appl., 6, (1982), 225–227] is discussed. Moreover, the notion of the essential surjectivity modulus and left (resp. right) essential minimum modulus on Banach spaces are also defined and will be studied in this paper. The asymptotic formula for the essential spectrum of a semi-Fredholm operator with index zero in terms of the left and right essential minimum moduli is proved.</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta scientiarum mathematicarum</subfield><subfield code="d">Springer International Publishing, 1941</subfield><subfield code="g">82(2016), 1-2 vom: 01. Juni, Seite 147-164</subfield><subfield code="w">(DE-627)129476382</subfield><subfield code="w">(DE-600)203491-8</subfield><subfield code="w">(DE-576)014855984</subfield><subfield code="x">0001-6969</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:82</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1-2</subfield><subfield code="g">day:01</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:147-164</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.14232/actasm-014-538-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FIN</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">82</subfield><subfield code="j">2016</subfield><subfield code="e">1-2</subfield><subfield code="b">01</subfield><subfield code="c">06</subfield><subfield code="h">147-164</subfield></datafield></record></collection>
|
author |
Skhiri, Haïkel |
spellingShingle |
Skhiri, Haïkel ddc 510 ssgn 17,1 bkl 31.00 On the essential minimum modulus of linear operators in Banach spaces |
authorStr |
Skhiri, Haïkel |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129476382 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0001-6969 |
topic_title |
510 VZ 17,1 ssgn 31.00 bkl On the essential minimum modulus of linear operators in Banach spaces |
topic |
ddc 510 ssgn 17,1 bkl 31.00 |
topic_unstemmed |
ddc 510 ssgn 17,1 bkl 31.00 |
topic_browse |
ddc 510 ssgn 17,1 bkl 31.00 |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Acta scientiarum mathematicarum |
hierarchy_parent_id |
129476382 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Acta scientiarum mathematicarum |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129476382 (DE-600)203491-8 (DE-576)014855984 |
title |
On the essential minimum modulus of linear operators in Banach spaces |
ctrlnum |
(DE-627)OLC2077684666 (DE-He213)actasm-014-538-8-p |
title_full |
On the essential minimum modulus of linear operators in Banach spaces |
author_sort |
Skhiri, Haïkel |
journal |
Acta scientiarum mathematicarum |
journalStr |
Acta scientiarum mathematicarum |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2016 |
contenttype_str_mv |
txt |
container_start_page |
147 |
author_browse |
Skhiri, Haïkel |
container_volume |
82 |
class |
510 VZ 17,1 ssgn 31.00 bkl |
format_se |
Aufsätze |
author-letter |
Skhiri, Haïkel |
doi_str_mv |
10.14232/actasm-014-538-8 |
dewey-full |
510 |
title_sort |
on the essential minimum modulus of linear operators in banach spaces |
title_auth |
On the essential minimum modulus of linear operators in Banach spaces |
abstract |
Abstract We shall show in this paper a quite useful formula connecting the essential minimum modulus and minimum modulus of any linear bounded operator defined on a separable Hilbert space. Since this formula does not depend on the structure of Hilbert space, this result enables us to define the essential minimum modulus of linear operators in the more general context of Banach spaces. The connection between our definition and that given by Zemánek [Geometric interpretation of the essential minimum modulus, Operator Theory: Adv. Appl., 6, (1982), 225–227] is discussed. Moreover, the notion of the essential surjectivity modulus and left (resp. right) essential minimum modulus on Banach spaces are also defined and will be studied in this paper. The asymptotic formula for the essential spectrum of a semi-Fredholm operator with index zero in terms of the left and right essential minimum moduli is proved. © Bolyai Institute, University of Szeged 2016 |
abstractGer |
Abstract We shall show in this paper a quite useful formula connecting the essential minimum modulus and minimum modulus of any linear bounded operator defined on a separable Hilbert space. Since this formula does not depend on the structure of Hilbert space, this result enables us to define the essential minimum modulus of linear operators in the more general context of Banach spaces. The connection between our definition and that given by Zemánek [Geometric interpretation of the essential minimum modulus, Operator Theory: Adv. Appl., 6, (1982), 225–227] is discussed. Moreover, the notion of the essential surjectivity modulus and left (resp. right) essential minimum modulus on Banach spaces are also defined and will be studied in this paper. The asymptotic formula for the essential spectrum of a semi-Fredholm operator with index zero in terms of the left and right essential minimum moduli is proved. © Bolyai Institute, University of Szeged 2016 |
abstract_unstemmed |
Abstract We shall show in this paper a quite useful formula connecting the essential minimum modulus and minimum modulus of any linear bounded operator defined on a separable Hilbert space. Since this formula does not depend on the structure of Hilbert space, this result enables us to define the essential minimum modulus of linear operators in the more general context of Banach spaces. The connection between our definition and that given by Zemánek [Geometric interpretation of the essential minimum modulus, Operator Theory: Adv. Appl., 6, (1982), 225–227] is discussed. Moreover, the notion of the essential surjectivity modulus and left (resp. right) essential minimum modulus on Banach spaces are also defined and will be studied in this paper. The asymptotic formula for the essential spectrum of a semi-Fredholm operator with index zero in terms of the left and right essential minimum moduli is proved. © Bolyai Institute, University of Szeged 2016 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-FIN SSG-OPC-MAT GBV_ILN_22 GBV_ILN_62 GBV_ILN_70 GBV_ILN_2005 GBV_ILN_2010 GBV_ILN_2014 GBV_ILN_2021 GBV_ILN_2088 GBV_ILN_4036 GBV_ILN_4306 GBV_ILN_4310 GBV_ILN_4318 |
container_issue |
1-2 |
title_short |
On the essential minimum modulus of linear operators in Banach spaces |
url |
https://doi.org/10.14232/actasm-014-538-8 |
remote_bool |
false |
ppnlink |
129476382 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.14232/actasm-014-538-8 |
up_date |
2024-07-03T16:47:44.559Z |
_version_ |
1803577211814412288 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2077684666</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505185257.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2016 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.14232/actasm-014-538-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2077684666</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)actasm-014-538-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Skhiri, Haïkel</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the essential minimum modulus of linear operators in Banach spaces</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2016</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Bolyai Institute, University of Szeged 2016</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We shall show in this paper a quite useful formula connecting the essential minimum modulus and minimum modulus of any linear bounded operator defined on a separable Hilbert space. Since this formula does not depend on the structure of Hilbert space, this result enables us to define the essential minimum modulus of linear operators in the more general context of Banach spaces. The connection between our definition and that given by Zemánek [Geometric interpretation of the essential minimum modulus, Operator Theory: Adv. Appl., 6, (1982), 225–227] is discussed. Moreover, the notion of the essential surjectivity modulus and left (resp. right) essential minimum modulus on Banach spaces are also defined and will be studied in this paper. The asymptotic formula for the essential spectrum of a semi-Fredholm operator with index zero in terms of the left and right essential minimum moduli is proved.</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta scientiarum mathematicarum</subfield><subfield code="d">Springer International Publishing, 1941</subfield><subfield code="g">82(2016), 1-2 vom: 01. Juni, Seite 147-164</subfield><subfield code="w">(DE-627)129476382</subfield><subfield code="w">(DE-600)203491-8</subfield><subfield code="w">(DE-576)014855984</subfield><subfield code="x">0001-6969</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:82</subfield><subfield code="g">year:2016</subfield><subfield code="g">number:1-2</subfield><subfield code="g">day:01</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:147-164</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.14232/actasm-014-538-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-FIN</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_62</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2005</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2021</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4306</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4310</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">82</subfield><subfield code="j">2016</subfield><subfield code="e">1-2</subfield><subfield code="b">01</subfield><subfield code="c">06</subfield><subfield code="h">147-164</subfield></datafield></record></collection>
|
score |
7.401458 |