Optimization design method of machine tool static geometric accuracy using tolerance modeling
Abstract Existing precision design methods cannot directly guide the tolerance design. Therefore, in this study, an optimization design method of machine tool static geometric accuracy based on tolerance modeling is proposed. In this methodology, the mapping relationship between the geometric error...
Ausführliche Beschreibung
Autor*in: |
Wu, Haorong [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: The international journal of advanced manufacturing technology - Springer London, 1985, 118(2021), 5-6 vom: 22. Sept., Seite 1793-1809 |
---|---|
Übergeordnetes Werk: |
volume:118 ; year:2021 ; number:5-6 ; day:22 ; month:09 ; pages:1793-1809 |
Links: |
---|
DOI / URN: |
10.1007/s00170-021-07992-6 |
---|
Katalog-ID: |
OLC2077709928 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2077709928 | ||
003 | DE-627 | ||
005 | 20230505185625.0 | ||
007 | tu | ||
008 | 221220s2021 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00170-021-07992-6 |2 doi | |
035 | |a (DE-627)OLC2077709928 | ||
035 | |a (DE-He213)s00170-021-07992-6-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Wu, Haorong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Optimization design method of machine tool static geometric accuracy using tolerance modeling |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 | ||
520 | |a Abstract Existing precision design methods cannot directly guide the tolerance design. Therefore, in this study, an optimization design method of machine tool static geometric accuracy based on tolerance modeling is proposed. In this methodology, the mapping relationship between the geometric error of machine tools and tolerance design is established using the small displacement torsor to represent the tolerance information and the Monte Carlo simulation method is used to establish the response model of the torsor parameters and the tolerance variation bandwidths. An assembly accuracy model is then established by combining a machine tool topology analysis and the forming mechanism of the joint surface error. To calculate the tolerances of the component joint surface, a tolerance response model related to the component joint surface tolerance and torsor parameters is developed. Finally, according to the state function of assembly accuracy reliability, a function response model of the assembly accuracy, reliability, and tolerance is developed. Combining the assembly’s processing cost model with the accuracy, reliability, and tolerance principles, a tolerance optimization model of the static geometric accuracy of a CNC machine tool, a linear axis motion guide, is constructed as a case study. Using a simulated annealing genetic algorithm to solve the tolerance optimization model, the tolerance optimization value is obtained, thereby verifying the effectiveness of the proposed method. | ||
650 | 4 | |a Monte Carlo simulation; | |
650 | 4 | |a Small displacement torsor; | |
650 | 4 | |a Tolerance modeling; | |
650 | 4 | |a Assembly accuracy model; | |
650 | 4 | |a Static geometric accuracy optimization of machine tools | |
700 | 1 | |a Li, Xiaoxiao |4 aut | |
700 | 1 | |a Sun, Fuchun |4 aut | |
700 | 1 | |a Zheng, Hualin |4 aut | |
700 | 1 | |a Zhao, Yongxin |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The international journal of advanced manufacturing technology |d Springer London, 1985 |g 118(2021), 5-6 vom: 22. Sept., Seite 1793-1809 |w (DE-627)129185299 |w (DE-600)52651-4 |w (DE-576)014456192 |x 0268-3768 |7 nnns |
773 | 1 | 8 | |g volume:118 |g year:2021 |g number:5-6 |g day:22 |g month:09 |g pages:1793-1809 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00170-021-07992-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2333 | ||
951 | |a AR | ||
952 | |d 118 |j 2021 |e 5-6 |b 22 |c 09 |h 1793-1809 |
author_variant |
h w hw x l xl f s fs h z hz y z yz |
---|---|
matchkey_str |
article:02683768:2021----::piiaineinehdfahntosaigoerccuay |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s00170-021-07992-6 doi (DE-627)OLC2077709928 (DE-He213)s00170-021-07992-6-p DE-627 ger DE-627 rakwb eng 670 VZ Wu, Haorong verfasserin aut Optimization design method of machine tool static geometric accuracy using tolerance modeling 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 Abstract Existing precision design methods cannot directly guide the tolerance design. Therefore, in this study, an optimization design method of machine tool static geometric accuracy based on tolerance modeling is proposed. In this methodology, the mapping relationship between the geometric error of machine tools and tolerance design is established using the small displacement torsor to represent the tolerance information and the Monte Carlo simulation method is used to establish the response model of the torsor parameters and the tolerance variation bandwidths. An assembly accuracy model is then established by combining a machine tool topology analysis and the forming mechanism of the joint surface error. To calculate the tolerances of the component joint surface, a tolerance response model related to the component joint surface tolerance and torsor parameters is developed. Finally, according to the state function of assembly accuracy reliability, a function response model of the assembly accuracy, reliability, and tolerance is developed. Combining the assembly’s processing cost model with the accuracy, reliability, and tolerance principles, a tolerance optimization model of the static geometric accuracy of a CNC machine tool, a linear axis motion guide, is constructed as a case study. Using a simulated annealing genetic algorithm to solve the tolerance optimization model, the tolerance optimization value is obtained, thereby verifying the effectiveness of the proposed method. Monte Carlo simulation; Small displacement torsor; Tolerance modeling; Assembly accuracy model; Static geometric accuracy optimization of machine tools Li, Xiaoxiao aut Sun, Fuchun aut Zheng, Hualin aut Zhao, Yongxin aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 118(2021), 5-6 vom: 22. Sept., Seite 1793-1809 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:118 year:2021 number:5-6 day:22 month:09 pages:1793-1809 https://doi.org/10.1007/s00170-021-07992-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 AR 118 2021 5-6 22 09 1793-1809 |
spelling |
10.1007/s00170-021-07992-6 doi (DE-627)OLC2077709928 (DE-He213)s00170-021-07992-6-p DE-627 ger DE-627 rakwb eng 670 VZ Wu, Haorong verfasserin aut Optimization design method of machine tool static geometric accuracy using tolerance modeling 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 Abstract Existing precision design methods cannot directly guide the tolerance design. Therefore, in this study, an optimization design method of machine tool static geometric accuracy based on tolerance modeling is proposed. In this methodology, the mapping relationship between the geometric error of machine tools and tolerance design is established using the small displacement torsor to represent the tolerance information and the Monte Carlo simulation method is used to establish the response model of the torsor parameters and the tolerance variation bandwidths. An assembly accuracy model is then established by combining a machine tool topology analysis and the forming mechanism of the joint surface error. To calculate the tolerances of the component joint surface, a tolerance response model related to the component joint surface tolerance and torsor parameters is developed. Finally, according to the state function of assembly accuracy reliability, a function response model of the assembly accuracy, reliability, and tolerance is developed. Combining the assembly’s processing cost model with the accuracy, reliability, and tolerance principles, a tolerance optimization model of the static geometric accuracy of a CNC machine tool, a linear axis motion guide, is constructed as a case study. Using a simulated annealing genetic algorithm to solve the tolerance optimization model, the tolerance optimization value is obtained, thereby verifying the effectiveness of the proposed method. Monte Carlo simulation; Small displacement torsor; Tolerance modeling; Assembly accuracy model; Static geometric accuracy optimization of machine tools Li, Xiaoxiao aut Sun, Fuchun aut Zheng, Hualin aut Zhao, Yongxin aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 118(2021), 5-6 vom: 22. Sept., Seite 1793-1809 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:118 year:2021 number:5-6 day:22 month:09 pages:1793-1809 https://doi.org/10.1007/s00170-021-07992-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 AR 118 2021 5-6 22 09 1793-1809 |
allfields_unstemmed |
10.1007/s00170-021-07992-6 doi (DE-627)OLC2077709928 (DE-He213)s00170-021-07992-6-p DE-627 ger DE-627 rakwb eng 670 VZ Wu, Haorong verfasserin aut Optimization design method of machine tool static geometric accuracy using tolerance modeling 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 Abstract Existing precision design methods cannot directly guide the tolerance design. Therefore, in this study, an optimization design method of machine tool static geometric accuracy based on tolerance modeling is proposed. In this methodology, the mapping relationship between the geometric error of machine tools and tolerance design is established using the small displacement torsor to represent the tolerance information and the Monte Carlo simulation method is used to establish the response model of the torsor parameters and the tolerance variation bandwidths. An assembly accuracy model is then established by combining a machine tool topology analysis and the forming mechanism of the joint surface error. To calculate the tolerances of the component joint surface, a tolerance response model related to the component joint surface tolerance and torsor parameters is developed. Finally, according to the state function of assembly accuracy reliability, a function response model of the assembly accuracy, reliability, and tolerance is developed. Combining the assembly’s processing cost model with the accuracy, reliability, and tolerance principles, a tolerance optimization model of the static geometric accuracy of a CNC machine tool, a linear axis motion guide, is constructed as a case study. Using a simulated annealing genetic algorithm to solve the tolerance optimization model, the tolerance optimization value is obtained, thereby verifying the effectiveness of the proposed method. Monte Carlo simulation; Small displacement torsor; Tolerance modeling; Assembly accuracy model; Static geometric accuracy optimization of machine tools Li, Xiaoxiao aut Sun, Fuchun aut Zheng, Hualin aut Zhao, Yongxin aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 118(2021), 5-6 vom: 22. Sept., Seite 1793-1809 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:118 year:2021 number:5-6 day:22 month:09 pages:1793-1809 https://doi.org/10.1007/s00170-021-07992-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 AR 118 2021 5-6 22 09 1793-1809 |
allfieldsGer |
10.1007/s00170-021-07992-6 doi (DE-627)OLC2077709928 (DE-He213)s00170-021-07992-6-p DE-627 ger DE-627 rakwb eng 670 VZ Wu, Haorong verfasserin aut Optimization design method of machine tool static geometric accuracy using tolerance modeling 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 Abstract Existing precision design methods cannot directly guide the tolerance design. Therefore, in this study, an optimization design method of machine tool static geometric accuracy based on tolerance modeling is proposed. In this methodology, the mapping relationship between the geometric error of machine tools and tolerance design is established using the small displacement torsor to represent the tolerance information and the Monte Carlo simulation method is used to establish the response model of the torsor parameters and the tolerance variation bandwidths. An assembly accuracy model is then established by combining a machine tool topology analysis and the forming mechanism of the joint surface error. To calculate the tolerances of the component joint surface, a tolerance response model related to the component joint surface tolerance and torsor parameters is developed. Finally, according to the state function of assembly accuracy reliability, a function response model of the assembly accuracy, reliability, and tolerance is developed. Combining the assembly’s processing cost model with the accuracy, reliability, and tolerance principles, a tolerance optimization model of the static geometric accuracy of a CNC machine tool, a linear axis motion guide, is constructed as a case study. Using a simulated annealing genetic algorithm to solve the tolerance optimization model, the tolerance optimization value is obtained, thereby verifying the effectiveness of the proposed method. Monte Carlo simulation; Small displacement torsor; Tolerance modeling; Assembly accuracy model; Static geometric accuracy optimization of machine tools Li, Xiaoxiao aut Sun, Fuchun aut Zheng, Hualin aut Zhao, Yongxin aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 118(2021), 5-6 vom: 22. Sept., Seite 1793-1809 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:118 year:2021 number:5-6 day:22 month:09 pages:1793-1809 https://doi.org/10.1007/s00170-021-07992-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 AR 118 2021 5-6 22 09 1793-1809 |
allfieldsSound |
10.1007/s00170-021-07992-6 doi (DE-627)OLC2077709928 (DE-He213)s00170-021-07992-6-p DE-627 ger DE-627 rakwb eng 670 VZ Wu, Haorong verfasserin aut Optimization design method of machine tool static geometric accuracy using tolerance modeling 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 Abstract Existing precision design methods cannot directly guide the tolerance design. Therefore, in this study, an optimization design method of machine tool static geometric accuracy based on tolerance modeling is proposed. In this methodology, the mapping relationship between the geometric error of machine tools and tolerance design is established using the small displacement torsor to represent the tolerance information and the Monte Carlo simulation method is used to establish the response model of the torsor parameters and the tolerance variation bandwidths. An assembly accuracy model is then established by combining a machine tool topology analysis and the forming mechanism of the joint surface error. To calculate the tolerances of the component joint surface, a tolerance response model related to the component joint surface tolerance and torsor parameters is developed. Finally, according to the state function of assembly accuracy reliability, a function response model of the assembly accuracy, reliability, and tolerance is developed. Combining the assembly’s processing cost model with the accuracy, reliability, and tolerance principles, a tolerance optimization model of the static geometric accuracy of a CNC machine tool, a linear axis motion guide, is constructed as a case study. Using a simulated annealing genetic algorithm to solve the tolerance optimization model, the tolerance optimization value is obtained, thereby verifying the effectiveness of the proposed method. Monte Carlo simulation; Small displacement torsor; Tolerance modeling; Assembly accuracy model; Static geometric accuracy optimization of machine tools Li, Xiaoxiao aut Sun, Fuchun aut Zheng, Hualin aut Zhao, Yongxin aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 118(2021), 5-6 vom: 22. Sept., Seite 1793-1809 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:118 year:2021 number:5-6 day:22 month:09 pages:1793-1809 https://doi.org/10.1007/s00170-021-07992-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 AR 118 2021 5-6 22 09 1793-1809 |
language |
English |
source |
Enthalten in The international journal of advanced manufacturing technology 118(2021), 5-6 vom: 22. Sept., Seite 1793-1809 volume:118 year:2021 number:5-6 day:22 month:09 pages:1793-1809 |
sourceStr |
Enthalten in The international journal of advanced manufacturing technology 118(2021), 5-6 vom: 22. Sept., Seite 1793-1809 volume:118 year:2021 number:5-6 day:22 month:09 pages:1793-1809 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Monte Carlo simulation; Small displacement torsor; Tolerance modeling; Assembly accuracy model; Static geometric accuracy optimization of machine tools |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
The international journal of advanced manufacturing technology |
authorswithroles_txt_mv |
Wu, Haorong @@aut@@ Li, Xiaoxiao @@aut@@ Sun, Fuchun @@aut@@ Zheng, Hualin @@aut@@ Zhao, Yongxin @@aut@@ |
publishDateDaySort_date |
2021-09-22T00:00:00Z |
hierarchy_top_id |
129185299 |
dewey-sort |
3670 |
id |
OLC2077709928 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2077709928</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505185625.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00170-021-07992-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2077709928</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00170-021-07992-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Haorong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimization design method of machine tool static geometric accuracy using tolerance modeling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Existing precision design methods cannot directly guide the tolerance design. Therefore, in this study, an optimization design method of machine tool static geometric accuracy based on tolerance modeling is proposed. In this methodology, the mapping relationship between the geometric error of machine tools and tolerance design is established using the small displacement torsor to represent the tolerance information and the Monte Carlo simulation method is used to establish the response model of the torsor parameters and the tolerance variation bandwidths. An assembly accuracy model is then established by combining a machine tool topology analysis and the forming mechanism of the joint surface error. To calculate the tolerances of the component joint surface, a tolerance response model related to the component joint surface tolerance and torsor parameters is developed. Finally, according to the state function of assembly accuracy reliability, a function response model of the assembly accuracy, reliability, and tolerance is developed. Combining the assembly’s processing cost model with the accuracy, reliability, and tolerance principles, a tolerance optimization model of the static geometric accuracy of a CNC machine tool, a linear axis motion guide, is constructed as a case study. Using a simulated annealing genetic algorithm to solve the tolerance optimization model, the tolerance optimization value is obtained, thereby verifying the effectiveness of the proposed method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monte Carlo simulation;</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Small displacement torsor;</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tolerance modeling;</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Assembly accuracy model;</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Static geometric accuracy optimization of machine tools</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xiaoxiao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Fuchun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zheng, Hualin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Yongxin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The international journal of advanced manufacturing technology</subfield><subfield code="d">Springer London, 1985</subfield><subfield code="g">118(2021), 5-6 vom: 22. Sept., Seite 1793-1809</subfield><subfield code="w">(DE-627)129185299</subfield><subfield code="w">(DE-600)52651-4</subfield><subfield code="w">(DE-576)014456192</subfield><subfield code="x">0268-3768</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:118</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:5-6</subfield><subfield code="g">day:22</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:1793-1809</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00170-021-07992-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">118</subfield><subfield code="j">2021</subfield><subfield code="e">5-6</subfield><subfield code="b">22</subfield><subfield code="c">09</subfield><subfield code="h">1793-1809</subfield></datafield></record></collection>
|
author |
Wu, Haorong |
spellingShingle |
Wu, Haorong ddc 670 misc Monte Carlo simulation; misc Small displacement torsor; misc Tolerance modeling; misc Assembly accuracy model; misc Static geometric accuracy optimization of machine tools Optimization design method of machine tool static geometric accuracy using tolerance modeling |
authorStr |
Wu, Haorong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129185299 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0268-3768 |
topic_title |
670 VZ Optimization design method of machine tool static geometric accuracy using tolerance modeling Monte Carlo simulation Small displacement torsor Tolerance modeling Assembly accuracy model Static geometric accuracy optimization of machine tools |
topic |
ddc 670 misc Monte Carlo simulation; misc Small displacement torsor; misc Tolerance modeling; misc Assembly accuracy model; misc Static geometric accuracy optimization of machine tools |
topic_unstemmed |
ddc 670 misc Monte Carlo simulation; misc Small displacement torsor; misc Tolerance modeling; misc Assembly accuracy model; misc Static geometric accuracy optimization of machine tools |
topic_browse |
ddc 670 misc Monte Carlo simulation; misc Small displacement torsor; misc Tolerance modeling; misc Assembly accuracy model; misc Static geometric accuracy optimization of machine tools |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
The international journal of advanced manufacturing technology |
hierarchy_parent_id |
129185299 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
The international journal of advanced manufacturing technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 |
title |
Optimization design method of machine tool static geometric accuracy using tolerance modeling |
ctrlnum |
(DE-627)OLC2077709928 (DE-He213)s00170-021-07992-6-p |
title_full |
Optimization design method of machine tool static geometric accuracy using tolerance modeling |
author_sort |
Wu, Haorong |
journal |
The international journal of advanced manufacturing technology |
journalStr |
The international journal of advanced manufacturing technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
1793 |
author_browse |
Wu, Haorong Li, Xiaoxiao Sun, Fuchun Zheng, Hualin Zhao, Yongxin |
container_volume |
118 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Wu, Haorong |
doi_str_mv |
10.1007/s00170-021-07992-6 |
dewey-full |
670 |
title_sort |
optimization design method of machine tool static geometric accuracy using tolerance modeling |
title_auth |
Optimization design method of machine tool static geometric accuracy using tolerance modeling |
abstract |
Abstract Existing precision design methods cannot directly guide the tolerance design. Therefore, in this study, an optimization design method of machine tool static geometric accuracy based on tolerance modeling is proposed. In this methodology, the mapping relationship between the geometric error of machine tools and tolerance design is established using the small displacement torsor to represent the tolerance information and the Monte Carlo simulation method is used to establish the response model of the torsor parameters and the tolerance variation bandwidths. An assembly accuracy model is then established by combining a machine tool topology analysis and the forming mechanism of the joint surface error. To calculate the tolerances of the component joint surface, a tolerance response model related to the component joint surface tolerance and torsor parameters is developed. Finally, according to the state function of assembly accuracy reliability, a function response model of the assembly accuracy, reliability, and tolerance is developed. Combining the assembly’s processing cost model with the accuracy, reliability, and tolerance principles, a tolerance optimization model of the static geometric accuracy of a CNC machine tool, a linear axis motion guide, is constructed as a case study. Using a simulated annealing genetic algorithm to solve the tolerance optimization model, the tolerance optimization value is obtained, thereby verifying the effectiveness of the proposed method. © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 |
abstractGer |
Abstract Existing precision design methods cannot directly guide the tolerance design. Therefore, in this study, an optimization design method of machine tool static geometric accuracy based on tolerance modeling is proposed. In this methodology, the mapping relationship between the geometric error of machine tools and tolerance design is established using the small displacement torsor to represent the tolerance information and the Monte Carlo simulation method is used to establish the response model of the torsor parameters and the tolerance variation bandwidths. An assembly accuracy model is then established by combining a machine tool topology analysis and the forming mechanism of the joint surface error. To calculate the tolerances of the component joint surface, a tolerance response model related to the component joint surface tolerance and torsor parameters is developed. Finally, according to the state function of assembly accuracy reliability, a function response model of the assembly accuracy, reliability, and tolerance is developed. Combining the assembly’s processing cost model with the accuracy, reliability, and tolerance principles, a tolerance optimization model of the static geometric accuracy of a CNC machine tool, a linear axis motion guide, is constructed as a case study. Using a simulated annealing genetic algorithm to solve the tolerance optimization model, the tolerance optimization value is obtained, thereby verifying the effectiveness of the proposed method. © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 |
abstract_unstemmed |
Abstract Existing precision design methods cannot directly guide the tolerance design. Therefore, in this study, an optimization design method of machine tool static geometric accuracy based on tolerance modeling is proposed. In this methodology, the mapping relationship between the geometric error of machine tools and tolerance design is established using the small displacement torsor to represent the tolerance information and the Monte Carlo simulation method is used to establish the response model of the torsor parameters and the tolerance variation bandwidths. An assembly accuracy model is then established by combining a machine tool topology analysis and the forming mechanism of the joint surface error. To calculate the tolerances of the component joint surface, a tolerance response model related to the component joint surface tolerance and torsor parameters is developed. Finally, according to the state function of assembly accuracy reliability, a function response model of the assembly accuracy, reliability, and tolerance is developed. Combining the assembly’s processing cost model with the accuracy, reliability, and tolerance principles, a tolerance optimization model of the static geometric accuracy of a CNC machine tool, a linear axis motion guide, is constructed as a case study. Using a simulated annealing genetic algorithm to solve the tolerance optimization model, the tolerance optimization value is obtained, thereby verifying the effectiveness of the proposed method. © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 |
container_issue |
5-6 |
title_short |
Optimization design method of machine tool static geometric accuracy using tolerance modeling |
url |
https://doi.org/10.1007/s00170-021-07992-6 |
remote_bool |
false |
author2 |
Li, Xiaoxiao Sun, Fuchun Zheng, Hualin Zhao, Yongxin |
author2Str |
Li, Xiaoxiao Sun, Fuchun Zheng, Hualin Zhao, Yongxin |
ppnlink |
129185299 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00170-021-07992-6 |
up_date |
2024-07-03T16:55:55.935Z |
_version_ |
1803577727056347137 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2077709928</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505185625.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00170-021-07992-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2077709928</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00170-021-07992-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wu, Haorong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimization design method of machine tool static geometric accuracy using tolerance modeling</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Existing precision design methods cannot directly guide the tolerance design. Therefore, in this study, an optimization design method of machine tool static geometric accuracy based on tolerance modeling is proposed. In this methodology, the mapping relationship between the geometric error of machine tools and tolerance design is established using the small displacement torsor to represent the tolerance information and the Monte Carlo simulation method is used to establish the response model of the torsor parameters and the tolerance variation bandwidths. An assembly accuracy model is then established by combining a machine tool topology analysis and the forming mechanism of the joint surface error. To calculate the tolerances of the component joint surface, a tolerance response model related to the component joint surface tolerance and torsor parameters is developed. Finally, according to the state function of assembly accuracy reliability, a function response model of the assembly accuracy, reliability, and tolerance is developed. Combining the assembly’s processing cost model with the accuracy, reliability, and tolerance principles, a tolerance optimization model of the static geometric accuracy of a CNC machine tool, a linear axis motion guide, is constructed as a case study. Using a simulated annealing genetic algorithm to solve the tolerance optimization model, the tolerance optimization value is obtained, thereby verifying the effectiveness of the proposed method.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Monte Carlo simulation;</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Small displacement torsor;</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Tolerance modeling;</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Assembly accuracy model;</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Static geometric accuracy optimization of machine tools</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xiaoxiao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Fuchun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zheng, Hualin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Yongxin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The international journal of advanced manufacturing technology</subfield><subfield code="d">Springer London, 1985</subfield><subfield code="g">118(2021), 5-6 vom: 22. Sept., Seite 1793-1809</subfield><subfield code="w">(DE-627)129185299</subfield><subfield code="w">(DE-600)52651-4</subfield><subfield code="w">(DE-576)014456192</subfield><subfield code="x">0268-3768</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:118</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:5-6</subfield><subfield code="g">day:22</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:1793-1809</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00170-021-07992-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">118</subfield><subfield code="j">2021</subfield><subfield code="e">5-6</subfield><subfield code="b">22</subfield><subfield code="c">09</subfield><subfield code="h">1793-1809</subfield></datafield></record></collection>
|
score |
7.4017696 |