CDFA method: a way to assess assembly and installation performance of aircraft system architectures at the conceptual design
Abstract This paper describes an engineering design methodology, called conceptual design for assembly (CDFA) in the context of aircraft development, to assess aircraft systems’ installation during conceptual phase, in relation to industrial performance objectives. The methodology is based on a give...
Ausführliche Beschreibung
Autor*in: |
Formentini, Giovanni [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Research in engineering design - Springer London, 1989, 33(2022), 1 vom: Jan., Seite 31-52 |
---|---|
Übergeordnetes Werk: |
volume:33 ; year:2022 ; number:1 ; month:01 ; pages:31-52 |
Links: |
---|
DOI / URN: |
10.1007/s00163-021-00378-5 |
---|
Katalog-ID: |
OLC2077937831 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2077937831 | ||
003 | DE-627 | ||
005 | 20230505204736.0 | ||
007 | tu | ||
008 | 221220s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00163-021-00378-5 |2 doi | |
035 | |a (DE-627)OLC2077937831 | ||
035 | |a (DE-He213)s00163-021-00378-5-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |q VZ |
100 | 1 | |a Formentini, Giovanni |e verfasserin |0 (orcid)0000-0002-2321-6723 |4 aut | |
245 | 1 | 0 | |a CDFA method: a way to assess assembly and installation performance of aircraft system architectures at the conceptual design |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 | ||
520 | |a Abstract This paper describes an engineering design methodology, called conceptual design for assembly (CDFA) in the context of aircraft development, to assess aircraft systems’ installation during conceptual phase, in relation to industrial performance objectives. The methodology is based on a given framework (hierarchical structure) which includes a set of attributes, collected in recognized domains that characterize the aircraft systems installation. The framework of the CDFA methodology enables to analyze product architectures at different levels of granularity, splitting the global analysis into sub-problems (problem discretization) with the aim to help architects and designers to identify product architecture weaknesses in terms of fit for assembly performances. The CDFA methodology was applied on a complex system (the nose-fuselage of a commercial aircraft) presenting a high number of criticalities both for the product and its assembly operations. Results identified the architectural components leading to the less efficient assembly operations and the rationales enabling to elaborate alternative architectures for an improved product industrial efficiency. | ||
650 | 4 | |a Product development | |
650 | 4 | |a Architectural design | |
650 | 4 | |a Design methodology | |
650 | 4 | |a Conceptual design | |
650 | 4 | |a Aircraft design | |
650 | 4 | |a Design for manufacturing and assembly | |
650 | 4 | |a Fit for assembly | |
700 | 1 | |a Bouissiere, Francois |4 aut | |
700 | 1 | |a Cuiller, Claude |4 aut | |
700 | 1 | |a Dereux, Pierre-Eric |4 aut | |
700 | 1 | |a Favi, Claudio |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Research in engineering design |d Springer London, 1989 |g 33(2022), 1 vom: Jan., Seite 31-52 |w (DE-627)130805815 |w (DE-600)1009584-6 |w (DE-576)023046686 |x 0934-9839 |7 nnns |
773 | 1 | 8 | |g volume:33 |g year:2022 |g number:1 |g month:01 |g pages:31-52 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00163-021-00378-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-WIW | ||
912 | |a GBV_ILN_2018 | ||
951 | |a AR | ||
952 | |d 33 |j 2022 |e 1 |c 01 |h 31-52 |
author_variant |
g f gf f b fb c c cc p e d ped c f cf |
---|---|
matchkey_str |
article:09349839:2022----::daehdwyosessebynisaltopromneficatytmrht |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s00163-021-00378-5 doi (DE-627)OLC2077937831 (DE-He213)s00163-021-00378-5-p DE-627 ger DE-627 rakwb eng 600 VZ Formentini, Giovanni verfasserin (orcid)0000-0002-2321-6723 aut CDFA method: a way to assess assembly and installation performance of aircraft system architectures at the conceptual design 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 Abstract This paper describes an engineering design methodology, called conceptual design for assembly (CDFA) in the context of aircraft development, to assess aircraft systems’ installation during conceptual phase, in relation to industrial performance objectives. The methodology is based on a given framework (hierarchical structure) which includes a set of attributes, collected in recognized domains that characterize the aircraft systems installation. The framework of the CDFA methodology enables to analyze product architectures at different levels of granularity, splitting the global analysis into sub-problems (problem discretization) with the aim to help architects and designers to identify product architecture weaknesses in terms of fit for assembly performances. The CDFA methodology was applied on a complex system (the nose-fuselage of a commercial aircraft) presenting a high number of criticalities both for the product and its assembly operations. Results identified the architectural components leading to the less efficient assembly operations and the rationales enabling to elaborate alternative architectures for an improved product industrial efficiency. Product development Architectural design Design methodology Conceptual design Aircraft design Design for manufacturing and assembly Fit for assembly Bouissiere, Francois aut Cuiller, Claude aut Dereux, Pierre-Eric aut Favi, Claudio aut Enthalten in Research in engineering design Springer London, 1989 33(2022), 1 vom: Jan., Seite 31-52 (DE-627)130805815 (DE-600)1009584-6 (DE-576)023046686 0934-9839 nnns volume:33 year:2022 number:1 month:01 pages:31-52 https://doi.org/10.1007/s00163-021-00378-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_2018 AR 33 2022 1 01 31-52 |
spelling |
10.1007/s00163-021-00378-5 doi (DE-627)OLC2077937831 (DE-He213)s00163-021-00378-5-p DE-627 ger DE-627 rakwb eng 600 VZ Formentini, Giovanni verfasserin (orcid)0000-0002-2321-6723 aut CDFA method: a way to assess assembly and installation performance of aircraft system architectures at the conceptual design 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 Abstract This paper describes an engineering design methodology, called conceptual design for assembly (CDFA) in the context of aircraft development, to assess aircraft systems’ installation during conceptual phase, in relation to industrial performance objectives. The methodology is based on a given framework (hierarchical structure) which includes a set of attributes, collected in recognized domains that characterize the aircraft systems installation. The framework of the CDFA methodology enables to analyze product architectures at different levels of granularity, splitting the global analysis into sub-problems (problem discretization) with the aim to help architects and designers to identify product architecture weaknesses in terms of fit for assembly performances. The CDFA methodology was applied on a complex system (the nose-fuselage of a commercial aircraft) presenting a high number of criticalities both for the product and its assembly operations. Results identified the architectural components leading to the less efficient assembly operations and the rationales enabling to elaborate alternative architectures for an improved product industrial efficiency. Product development Architectural design Design methodology Conceptual design Aircraft design Design for manufacturing and assembly Fit for assembly Bouissiere, Francois aut Cuiller, Claude aut Dereux, Pierre-Eric aut Favi, Claudio aut Enthalten in Research in engineering design Springer London, 1989 33(2022), 1 vom: Jan., Seite 31-52 (DE-627)130805815 (DE-600)1009584-6 (DE-576)023046686 0934-9839 nnns volume:33 year:2022 number:1 month:01 pages:31-52 https://doi.org/10.1007/s00163-021-00378-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_2018 AR 33 2022 1 01 31-52 |
allfields_unstemmed |
10.1007/s00163-021-00378-5 doi (DE-627)OLC2077937831 (DE-He213)s00163-021-00378-5-p DE-627 ger DE-627 rakwb eng 600 VZ Formentini, Giovanni verfasserin (orcid)0000-0002-2321-6723 aut CDFA method: a way to assess assembly and installation performance of aircraft system architectures at the conceptual design 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 Abstract This paper describes an engineering design methodology, called conceptual design for assembly (CDFA) in the context of aircraft development, to assess aircraft systems’ installation during conceptual phase, in relation to industrial performance objectives. The methodology is based on a given framework (hierarchical structure) which includes a set of attributes, collected in recognized domains that characterize the aircraft systems installation. The framework of the CDFA methodology enables to analyze product architectures at different levels of granularity, splitting the global analysis into sub-problems (problem discretization) with the aim to help architects and designers to identify product architecture weaknesses in terms of fit for assembly performances. The CDFA methodology was applied on a complex system (the nose-fuselage of a commercial aircraft) presenting a high number of criticalities both for the product and its assembly operations. Results identified the architectural components leading to the less efficient assembly operations and the rationales enabling to elaborate alternative architectures for an improved product industrial efficiency. Product development Architectural design Design methodology Conceptual design Aircraft design Design for manufacturing and assembly Fit for assembly Bouissiere, Francois aut Cuiller, Claude aut Dereux, Pierre-Eric aut Favi, Claudio aut Enthalten in Research in engineering design Springer London, 1989 33(2022), 1 vom: Jan., Seite 31-52 (DE-627)130805815 (DE-600)1009584-6 (DE-576)023046686 0934-9839 nnns volume:33 year:2022 number:1 month:01 pages:31-52 https://doi.org/10.1007/s00163-021-00378-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_2018 AR 33 2022 1 01 31-52 |
allfieldsGer |
10.1007/s00163-021-00378-5 doi (DE-627)OLC2077937831 (DE-He213)s00163-021-00378-5-p DE-627 ger DE-627 rakwb eng 600 VZ Formentini, Giovanni verfasserin (orcid)0000-0002-2321-6723 aut CDFA method: a way to assess assembly and installation performance of aircraft system architectures at the conceptual design 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 Abstract This paper describes an engineering design methodology, called conceptual design for assembly (CDFA) in the context of aircraft development, to assess aircraft systems’ installation during conceptual phase, in relation to industrial performance objectives. The methodology is based on a given framework (hierarchical structure) which includes a set of attributes, collected in recognized domains that characterize the aircraft systems installation. The framework of the CDFA methodology enables to analyze product architectures at different levels of granularity, splitting the global analysis into sub-problems (problem discretization) with the aim to help architects and designers to identify product architecture weaknesses in terms of fit for assembly performances. The CDFA methodology was applied on a complex system (the nose-fuselage of a commercial aircraft) presenting a high number of criticalities both for the product and its assembly operations. Results identified the architectural components leading to the less efficient assembly operations and the rationales enabling to elaborate alternative architectures for an improved product industrial efficiency. Product development Architectural design Design methodology Conceptual design Aircraft design Design for manufacturing and assembly Fit for assembly Bouissiere, Francois aut Cuiller, Claude aut Dereux, Pierre-Eric aut Favi, Claudio aut Enthalten in Research in engineering design Springer London, 1989 33(2022), 1 vom: Jan., Seite 31-52 (DE-627)130805815 (DE-600)1009584-6 (DE-576)023046686 0934-9839 nnns volume:33 year:2022 number:1 month:01 pages:31-52 https://doi.org/10.1007/s00163-021-00378-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_2018 AR 33 2022 1 01 31-52 |
allfieldsSound |
10.1007/s00163-021-00378-5 doi (DE-627)OLC2077937831 (DE-He213)s00163-021-00378-5-p DE-627 ger DE-627 rakwb eng 600 VZ Formentini, Giovanni verfasserin (orcid)0000-0002-2321-6723 aut CDFA method: a way to assess assembly and installation performance of aircraft system architectures at the conceptual design 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 Abstract This paper describes an engineering design methodology, called conceptual design for assembly (CDFA) in the context of aircraft development, to assess aircraft systems’ installation during conceptual phase, in relation to industrial performance objectives. The methodology is based on a given framework (hierarchical structure) which includes a set of attributes, collected in recognized domains that characterize the aircraft systems installation. The framework of the CDFA methodology enables to analyze product architectures at different levels of granularity, splitting the global analysis into sub-problems (problem discretization) with the aim to help architects and designers to identify product architecture weaknesses in terms of fit for assembly performances. The CDFA methodology was applied on a complex system (the nose-fuselage of a commercial aircraft) presenting a high number of criticalities both for the product and its assembly operations. Results identified the architectural components leading to the less efficient assembly operations and the rationales enabling to elaborate alternative architectures for an improved product industrial efficiency. Product development Architectural design Design methodology Conceptual design Aircraft design Design for manufacturing and assembly Fit for assembly Bouissiere, Francois aut Cuiller, Claude aut Dereux, Pierre-Eric aut Favi, Claudio aut Enthalten in Research in engineering design Springer London, 1989 33(2022), 1 vom: Jan., Seite 31-52 (DE-627)130805815 (DE-600)1009584-6 (DE-576)023046686 0934-9839 nnns volume:33 year:2022 number:1 month:01 pages:31-52 https://doi.org/10.1007/s00163-021-00378-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_2018 AR 33 2022 1 01 31-52 |
language |
English |
source |
Enthalten in Research in engineering design 33(2022), 1 vom: Jan., Seite 31-52 volume:33 year:2022 number:1 month:01 pages:31-52 |
sourceStr |
Enthalten in Research in engineering design 33(2022), 1 vom: Jan., Seite 31-52 volume:33 year:2022 number:1 month:01 pages:31-52 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Product development Architectural design Design methodology Conceptual design Aircraft design Design for manufacturing and assembly Fit for assembly |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
Research in engineering design |
authorswithroles_txt_mv |
Formentini, Giovanni @@aut@@ Bouissiere, Francois @@aut@@ Cuiller, Claude @@aut@@ Dereux, Pierre-Eric @@aut@@ Favi, Claudio @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
130805815 |
dewey-sort |
3600 |
id |
OLC2077937831 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2077937831</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505204736.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00163-021-00378-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2077937831</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00163-021-00378-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Formentini, Giovanni</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2321-6723</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">CDFA method: a way to assess assembly and installation performance of aircraft system architectures at the conceptual design</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper describes an engineering design methodology, called conceptual design for assembly (CDFA) in the context of aircraft development, to assess aircraft systems’ installation during conceptual phase, in relation to industrial performance objectives. The methodology is based on a given framework (hierarchical structure) which includes a set of attributes, collected in recognized domains that characterize the aircraft systems installation. The framework of the CDFA methodology enables to analyze product architectures at different levels of granularity, splitting the global analysis into sub-problems (problem discretization) with the aim to help architects and designers to identify product architecture weaknesses in terms of fit for assembly performances. The CDFA methodology was applied on a complex system (the nose-fuselage of a commercial aircraft) presenting a high number of criticalities both for the product and its assembly operations. Results identified the architectural components leading to the less efficient assembly operations and the rationales enabling to elaborate alternative architectures for an improved product industrial efficiency.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Product development</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Architectural design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Design methodology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conceptual design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aircraft design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Design for manufacturing and assembly</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fit for assembly</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bouissiere, Francois</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cuiller, Claude</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dereux, Pierre-Eric</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Favi, Claudio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Research in engineering design</subfield><subfield code="d">Springer London, 1989</subfield><subfield code="g">33(2022), 1 vom: Jan., Seite 31-52</subfield><subfield code="w">(DE-627)130805815</subfield><subfield code="w">(DE-600)1009584-6</subfield><subfield code="w">(DE-576)023046686</subfield><subfield code="x">0934-9839</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:31-52</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00163-021-00378-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="c">01</subfield><subfield code="h">31-52</subfield></datafield></record></collection>
|
author |
Formentini, Giovanni |
spellingShingle |
Formentini, Giovanni ddc 600 misc Product development misc Architectural design misc Design methodology misc Conceptual design misc Aircraft design misc Design for manufacturing and assembly misc Fit for assembly CDFA method: a way to assess assembly and installation performance of aircraft system architectures at the conceptual design |
authorStr |
Formentini, Giovanni |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130805815 |
format |
Article |
dewey-ones |
600 - Technology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0934-9839 |
topic_title |
600 VZ CDFA method: a way to assess assembly and installation performance of aircraft system architectures at the conceptual design Product development Architectural design Design methodology Conceptual design Aircraft design Design for manufacturing and assembly Fit for assembly |
topic |
ddc 600 misc Product development misc Architectural design misc Design methodology misc Conceptual design misc Aircraft design misc Design for manufacturing and assembly misc Fit for assembly |
topic_unstemmed |
ddc 600 misc Product development misc Architectural design misc Design methodology misc Conceptual design misc Aircraft design misc Design for manufacturing and assembly misc Fit for assembly |
topic_browse |
ddc 600 misc Product development misc Architectural design misc Design methodology misc Conceptual design misc Aircraft design misc Design for manufacturing and assembly misc Fit for assembly |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Research in engineering design |
hierarchy_parent_id |
130805815 |
dewey-tens |
600 - Technology |
hierarchy_top_title |
Research in engineering design |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130805815 (DE-600)1009584-6 (DE-576)023046686 |
title |
CDFA method: a way to assess assembly and installation performance of aircraft system architectures at the conceptual design |
ctrlnum |
(DE-627)OLC2077937831 (DE-He213)s00163-021-00378-5-p |
title_full |
CDFA method: a way to assess assembly and installation performance of aircraft system architectures at the conceptual design |
author_sort |
Formentini, Giovanni |
journal |
Research in engineering design |
journalStr |
Research in engineering design |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
31 |
author_browse |
Formentini, Giovanni Bouissiere, Francois Cuiller, Claude Dereux, Pierre-Eric Favi, Claudio |
container_volume |
33 |
class |
600 VZ |
format_se |
Aufsätze |
author-letter |
Formentini, Giovanni |
doi_str_mv |
10.1007/s00163-021-00378-5 |
normlink |
(ORCID)0000-0002-2321-6723 |
normlink_prefix_str_mv |
(orcid)0000-0002-2321-6723 |
dewey-full |
600 |
title_sort |
cdfa method: a way to assess assembly and installation performance of aircraft system architectures at the conceptual design |
title_auth |
CDFA method: a way to assess assembly and installation performance of aircraft system architectures at the conceptual design |
abstract |
Abstract This paper describes an engineering design methodology, called conceptual design for assembly (CDFA) in the context of aircraft development, to assess aircraft systems’ installation during conceptual phase, in relation to industrial performance objectives. The methodology is based on a given framework (hierarchical structure) which includes a set of attributes, collected in recognized domains that characterize the aircraft systems installation. The framework of the CDFA methodology enables to analyze product architectures at different levels of granularity, splitting the global analysis into sub-problems (problem discretization) with the aim to help architects and designers to identify product architecture weaknesses in terms of fit for assembly performances. The CDFA methodology was applied on a complex system (the nose-fuselage of a commercial aircraft) presenting a high number of criticalities both for the product and its assembly operations. Results identified the architectural components leading to the less efficient assembly operations and the rationales enabling to elaborate alternative architectures for an improved product industrial efficiency. © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 |
abstractGer |
Abstract This paper describes an engineering design methodology, called conceptual design for assembly (CDFA) in the context of aircraft development, to assess aircraft systems’ installation during conceptual phase, in relation to industrial performance objectives. The methodology is based on a given framework (hierarchical structure) which includes a set of attributes, collected in recognized domains that characterize the aircraft systems installation. The framework of the CDFA methodology enables to analyze product architectures at different levels of granularity, splitting the global analysis into sub-problems (problem discretization) with the aim to help architects and designers to identify product architecture weaknesses in terms of fit for assembly performances. The CDFA methodology was applied on a complex system (the nose-fuselage of a commercial aircraft) presenting a high number of criticalities both for the product and its assembly operations. Results identified the architectural components leading to the less efficient assembly operations and the rationales enabling to elaborate alternative architectures for an improved product industrial efficiency. © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 |
abstract_unstemmed |
Abstract This paper describes an engineering design methodology, called conceptual design for assembly (CDFA) in the context of aircraft development, to assess aircraft systems’ installation during conceptual phase, in relation to industrial performance objectives. The methodology is based on a given framework (hierarchical structure) which includes a set of attributes, collected in recognized domains that characterize the aircraft systems installation. The framework of the CDFA methodology enables to analyze product architectures at different levels of granularity, splitting the global analysis into sub-problems (problem discretization) with the aim to help architects and designers to identify product architecture weaknesses in terms of fit for assembly performances. The CDFA methodology was applied on a complex system (the nose-fuselage of a commercial aircraft) presenting a high number of criticalities both for the product and its assembly operations. Results identified the architectural components leading to the less efficient assembly operations and the rationales enabling to elaborate alternative architectures for an improved product industrial efficiency. © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-WIW GBV_ILN_2018 |
container_issue |
1 |
title_short |
CDFA method: a way to assess assembly and installation performance of aircraft system architectures at the conceptual design |
url |
https://doi.org/10.1007/s00163-021-00378-5 |
remote_bool |
false |
author2 |
Bouissiere, Francois Cuiller, Claude Dereux, Pierre-Eric Favi, Claudio |
author2Str |
Bouissiere, Francois Cuiller, Claude Dereux, Pierre-Eric Favi, Claudio |
ppnlink |
130805815 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00163-021-00378-5 |
up_date |
2024-07-03T18:02:10.269Z |
_version_ |
1803581894445498368 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2077937831</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505204736.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00163-021-00378-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2077937831</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00163-021-00378-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Formentini, Giovanni</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2321-6723</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">CDFA method: a way to assess assembly and installation performance of aircraft system architectures at the conceptual design</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper describes an engineering design methodology, called conceptual design for assembly (CDFA) in the context of aircraft development, to assess aircraft systems’ installation during conceptual phase, in relation to industrial performance objectives. The methodology is based on a given framework (hierarchical structure) which includes a set of attributes, collected in recognized domains that characterize the aircraft systems installation. The framework of the CDFA methodology enables to analyze product architectures at different levels of granularity, splitting the global analysis into sub-problems (problem discretization) with the aim to help architects and designers to identify product architecture weaknesses in terms of fit for assembly performances. The CDFA methodology was applied on a complex system (the nose-fuselage of a commercial aircraft) presenting a high number of criticalities both for the product and its assembly operations. Results identified the architectural components leading to the less efficient assembly operations and the rationales enabling to elaborate alternative architectures for an improved product industrial efficiency.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Product development</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Architectural design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Design methodology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Conceptual design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Aircraft design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Design for manufacturing and assembly</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fit for assembly</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bouissiere, Francois</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cuiller, Claude</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dereux, Pierre-Eric</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Favi, Claudio</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Research in engineering design</subfield><subfield code="d">Springer London, 1989</subfield><subfield code="g">33(2022), 1 vom: Jan., Seite 31-52</subfield><subfield code="w">(DE-627)130805815</subfield><subfield code="w">(DE-600)1009584-6</subfield><subfield code="w">(DE-576)023046686</subfield><subfield code="x">0934-9839</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:33</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:31-52</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00163-021-00378-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">33</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="c">01</subfield><subfield code="h">31-52</subfield></datafield></record></collection>
|
score |
7.402545 |