Analysis of Security Vulnerability Levels of In-Vehicle Network Topologies Applying Graph Representations
Abstract This article investigates cybersecurity issues related to in-vehicle communication networks. In-vehicle communication network security is evaluated based on the protection characteristics of the network components and the topology of the network. The automotive communication network topolog...
Ausführliche Beschreibung
Autor*in: |
Petho, Zsombor [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of electronic testing - Springer US, 1990, 37(2021), 5-6 vom: Dez., Seite 613-621 |
---|---|
Übergeordnetes Werk: |
volume:37 ; year:2021 ; number:5-6 ; month:12 ; pages:613-621 |
Links: |
---|
DOI / URN: |
10.1007/s10836-021-05973-x |
---|
Katalog-ID: |
OLC2078003247 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2078003247 | ||
003 | DE-627 | ||
005 | 20230505213443.0 | ||
007 | tu | ||
008 | 221220s2021 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10836-021-05973-x |2 doi | |
035 | |a (DE-627)OLC2078003247 | ||
035 | |a (DE-He213)s10836-021-05973-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |a 670 |q VZ |
100 | 1 | |a Petho, Zsombor |e verfasserin |0 (orcid)0000-0003-3054-4669 |4 aut | |
245 | 1 | 0 | |a Analysis of Security Vulnerability Levels of In-Vehicle Network Topologies Applying Graph Representations |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a Abstract This article investigates cybersecurity issues related to in-vehicle communication networks. In-vehicle communication network security is evaluated based on the protection characteristics of the network components and the topology of the network. The automotive communication network topologies are represented as undirected weighted graphs, and their vulnerability is estimated based on the specific characteristics of the generated graph. Thirteen different vehicle models have been investigated to compare the vulnerability levels of the in-vehicle network using the Dijkstra's shortest route algorithm. An important advantage of the proposed method is that it is in accordance with the most relevant security evaluation models. On the other hand, the newly introduced approach considers the Secure-by-Design concept principles. | ||
650 | 4 | |a In-vehicle network | |
650 | 4 | |a Shortest path algorithm | |
650 | 4 | |a Vulnerability | |
650 | 4 | |a Security analysis | |
700 | 1 | |a Khan, Intiyaz |4 aut | |
700 | 1 | |a Torok, Árpád |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of electronic testing |d Springer US, 1990 |g 37(2021), 5-6 vom: Dez., Seite 613-621 |w (DE-627)130869090 |w (DE-600)1033317-4 |w (DE-576)024991600 |x 0923-8174 |7 nnns |
773 | 1 | 8 | |g volume:37 |g year:2021 |g number:5-6 |g month:12 |g pages:613-621 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10836-021-05973-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
951 | |a AR | ||
952 | |d 37 |j 2021 |e 5-6 |c 12 |h 613-621 |
author_variant |
z p zp i k ik á t át |
---|---|
matchkey_str |
article:09238174:2021----::nlssfeuiyunrbltlvloivhceewrtplgeap |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s10836-021-05973-x doi (DE-627)OLC2078003247 (DE-He213)s10836-021-05973-x-p DE-627 ger DE-627 rakwb eng 004 670 VZ Petho, Zsombor verfasserin (orcid)0000-0003-3054-4669 aut Analysis of Security Vulnerability Levels of In-Vehicle Network Topologies Applying Graph Representations 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2022 Abstract This article investigates cybersecurity issues related to in-vehicle communication networks. In-vehicle communication network security is evaluated based on the protection characteristics of the network components and the topology of the network. The automotive communication network topologies are represented as undirected weighted graphs, and their vulnerability is estimated based on the specific characteristics of the generated graph. Thirteen different vehicle models have been investigated to compare the vulnerability levels of the in-vehicle network using the Dijkstra's shortest route algorithm. An important advantage of the proposed method is that it is in accordance with the most relevant security evaluation models. On the other hand, the newly introduced approach considers the Secure-by-Design concept principles. In-vehicle network Shortest path algorithm Vulnerability Security analysis Khan, Intiyaz aut Torok, Árpád aut Enthalten in Journal of electronic testing Springer US, 1990 37(2021), 5-6 vom: Dez., Seite 613-621 (DE-627)130869090 (DE-600)1033317-4 (DE-576)024991600 0923-8174 nnns volume:37 year:2021 number:5-6 month:12 pages:613-621 https://doi.org/10.1007/s10836-021-05973-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT AR 37 2021 5-6 12 613-621 |
spelling |
10.1007/s10836-021-05973-x doi (DE-627)OLC2078003247 (DE-He213)s10836-021-05973-x-p DE-627 ger DE-627 rakwb eng 004 670 VZ Petho, Zsombor verfasserin (orcid)0000-0003-3054-4669 aut Analysis of Security Vulnerability Levels of In-Vehicle Network Topologies Applying Graph Representations 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2022 Abstract This article investigates cybersecurity issues related to in-vehicle communication networks. In-vehicle communication network security is evaluated based on the protection characteristics of the network components and the topology of the network. The automotive communication network topologies are represented as undirected weighted graphs, and their vulnerability is estimated based on the specific characteristics of the generated graph. Thirteen different vehicle models have been investigated to compare the vulnerability levels of the in-vehicle network using the Dijkstra's shortest route algorithm. An important advantage of the proposed method is that it is in accordance with the most relevant security evaluation models. On the other hand, the newly introduced approach considers the Secure-by-Design concept principles. In-vehicle network Shortest path algorithm Vulnerability Security analysis Khan, Intiyaz aut Torok, Árpád aut Enthalten in Journal of electronic testing Springer US, 1990 37(2021), 5-6 vom: Dez., Seite 613-621 (DE-627)130869090 (DE-600)1033317-4 (DE-576)024991600 0923-8174 nnns volume:37 year:2021 number:5-6 month:12 pages:613-621 https://doi.org/10.1007/s10836-021-05973-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT AR 37 2021 5-6 12 613-621 |
allfields_unstemmed |
10.1007/s10836-021-05973-x doi (DE-627)OLC2078003247 (DE-He213)s10836-021-05973-x-p DE-627 ger DE-627 rakwb eng 004 670 VZ Petho, Zsombor verfasserin (orcid)0000-0003-3054-4669 aut Analysis of Security Vulnerability Levels of In-Vehicle Network Topologies Applying Graph Representations 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2022 Abstract This article investigates cybersecurity issues related to in-vehicle communication networks. In-vehicle communication network security is evaluated based on the protection characteristics of the network components and the topology of the network. The automotive communication network topologies are represented as undirected weighted graphs, and their vulnerability is estimated based on the specific characteristics of the generated graph. Thirteen different vehicle models have been investigated to compare the vulnerability levels of the in-vehicle network using the Dijkstra's shortest route algorithm. An important advantage of the proposed method is that it is in accordance with the most relevant security evaluation models. On the other hand, the newly introduced approach considers the Secure-by-Design concept principles. In-vehicle network Shortest path algorithm Vulnerability Security analysis Khan, Intiyaz aut Torok, Árpád aut Enthalten in Journal of electronic testing Springer US, 1990 37(2021), 5-6 vom: Dez., Seite 613-621 (DE-627)130869090 (DE-600)1033317-4 (DE-576)024991600 0923-8174 nnns volume:37 year:2021 number:5-6 month:12 pages:613-621 https://doi.org/10.1007/s10836-021-05973-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT AR 37 2021 5-6 12 613-621 |
allfieldsGer |
10.1007/s10836-021-05973-x doi (DE-627)OLC2078003247 (DE-He213)s10836-021-05973-x-p DE-627 ger DE-627 rakwb eng 004 670 VZ Petho, Zsombor verfasserin (orcid)0000-0003-3054-4669 aut Analysis of Security Vulnerability Levels of In-Vehicle Network Topologies Applying Graph Representations 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2022 Abstract This article investigates cybersecurity issues related to in-vehicle communication networks. In-vehicle communication network security is evaluated based on the protection characteristics of the network components and the topology of the network. The automotive communication network topologies are represented as undirected weighted graphs, and their vulnerability is estimated based on the specific characteristics of the generated graph. Thirteen different vehicle models have been investigated to compare the vulnerability levels of the in-vehicle network using the Dijkstra's shortest route algorithm. An important advantage of the proposed method is that it is in accordance with the most relevant security evaluation models. On the other hand, the newly introduced approach considers the Secure-by-Design concept principles. In-vehicle network Shortest path algorithm Vulnerability Security analysis Khan, Intiyaz aut Torok, Árpád aut Enthalten in Journal of electronic testing Springer US, 1990 37(2021), 5-6 vom: Dez., Seite 613-621 (DE-627)130869090 (DE-600)1033317-4 (DE-576)024991600 0923-8174 nnns volume:37 year:2021 number:5-6 month:12 pages:613-621 https://doi.org/10.1007/s10836-021-05973-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT AR 37 2021 5-6 12 613-621 |
allfieldsSound |
10.1007/s10836-021-05973-x doi (DE-627)OLC2078003247 (DE-He213)s10836-021-05973-x-p DE-627 ger DE-627 rakwb eng 004 670 VZ Petho, Zsombor verfasserin (orcid)0000-0003-3054-4669 aut Analysis of Security Vulnerability Levels of In-Vehicle Network Topologies Applying Graph Representations 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2022 Abstract This article investigates cybersecurity issues related to in-vehicle communication networks. In-vehicle communication network security is evaluated based on the protection characteristics of the network components and the topology of the network. The automotive communication network topologies are represented as undirected weighted graphs, and their vulnerability is estimated based on the specific characteristics of the generated graph. Thirteen different vehicle models have been investigated to compare the vulnerability levels of the in-vehicle network using the Dijkstra's shortest route algorithm. An important advantage of the proposed method is that it is in accordance with the most relevant security evaluation models. On the other hand, the newly introduced approach considers the Secure-by-Design concept principles. In-vehicle network Shortest path algorithm Vulnerability Security analysis Khan, Intiyaz aut Torok, Árpád aut Enthalten in Journal of electronic testing Springer US, 1990 37(2021), 5-6 vom: Dez., Seite 613-621 (DE-627)130869090 (DE-600)1033317-4 (DE-576)024991600 0923-8174 nnns volume:37 year:2021 number:5-6 month:12 pages:613-621 https://doi.org/10.1007/s10836-021-05973-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT AR 37 2021 5-6 12 613-621 |
language |
English |
source |
Enthalten in Journal of electronic testing 37(2021), 5-6 vom: Dez., Seite 613-621 volume:37 year:2021 number:5-6 month:12 pages:613-621 |
sourceStr |
Enthalten in Journal of electronic testing 37(2021), 5-6 vom: Dez., Seite 613-621 volume:37 year:2021 number:5-6 month:12 pages:613-621 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
In-vehicle network Shortest path algorithm Vulnerability Security analysis |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Journal of electronic testing |
authorswithroles_txt_mv |
Petho, Zsombor @@aut@@ Khan, Intiyaz @@aut@@ Torok, Árpád @@aut@@ |
publishDateDaySort_date |
2021-12-01T00:00:00Z |
hierarchy_top_id |
130869090 |
dewey-sort |
14 |
id |
OLC2078003247 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2078003247</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505213443.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10836-021-05973-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2078003247</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10836-021-05973-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Petho, Zsombor</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-3054-4669</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis of Security Vulnerability Levels of In-Vehicle Network Topologies Applying Graph Representations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This article investigates cybersecurity issues related to in-vehicle communication networks. In-vehicle communication network security is evaluated based on the protection characteristics of the network components and the topology of the network. The automotive communication network topologies are represented as undirected weighted graphs, and their vulnerability is estimated based on the specific characteristics of the generated graph. Thirteen different vehicle models have been investigated to compare the vulnerability levels of the in-vehicle network using the Dijkstra's shortest route algorithm. An important advantage of the proposed method is that it is in accordance with the most relevant security evaluation models. On the other hand, the newly introduced approach considers the Secure-by-Design concept principles.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">In-vehicle network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shortest path algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vulnerability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Security analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khan, Intiyaz</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Torok, Árpád</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of electronic testing</subfield><subfield code="d">Springer US, 1990</subfield><subfield code="g">37(2021), 5-6 vom: Dez., Seite 613-621</subfield><subfield code="w">(DE-627)130869090</subfield><subfield code="w">(DE-600)1033317-4</subfield><subfield code="w">(DE-576)024991600</subfield><subfield code="x">0923-8174</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:37</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:5-6</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:613-621</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10836-021-05973-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">37</subfield><subfield code="j">2021</subfield><subfield code="e">5-6</subfield><subfield code="c">12</subfield><subfield code="h">613-621</subfield></datafield></record></collection>
|
author |
Petho, Zsombor |
spellingShingle |
Petho, Zsombor ddc 004 misc In-vehicle network misc Shortest path algorithm misc Vulnerability misc Security analysis Analysis of Security Vulnerability Levels of In-Vehicle Network Topologies Applying Graph Representations |
authorStr |
Petho, Zsombor |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130869090 |
format |
Article |
dewey-ones |
004 - Data processing & computer science 670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0923-8174 |
topic_title |
004 670 VZ Analysis of Security Vulnerability Levels of In-Vehicle Network Topologies Applying Graph Representations In-vehicle network Shortest path algorithm Vulnerability Security analysis |
topic |
ddc 004 misc In-vehicle network misc Shortest path algorithm misc Vulnerability misc Security analysis |
topic_unstemmed |
ddc 004 misc In-vehicle network misc Shortest path algorithm misc Vulnerability misc Security analysis |
topic_browse |
ddc 004 misc In-vehicle network misc Shortest path algorithm misc Vulnerability misc Security analysis |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of electronic testing |
hierarchy_parent_id |
130869090 |
dewey-tens |
000 - Computer science, knowledge & systems 670 - Manufacturing |
hierarchy_top_title |
Journal of electronic testing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130869090 (DE-600)1033317-4 (DE-576)024991600 |
title |
Analysis of Security Vulnerability Levels of In-Vehicle Network Topologies Applying Graph Representations |
ctrlnum |
(DE-627)OLC2078003247 (DE-He213)s10836-021-05973-x-p |
title_full |
Analysis of Security Vulnerability Levels of In-Vehicle Network Topologies Applying Graph Representations |
author_sort |
Petho, Zsombor |
journal |
Journal of electronic testing |
journalStr |
Journal of electronic testing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
613 |
author_browse |
Petho, Zsombor Khan, Intiyaz Torok, Árpád |
container_volume |
37 |
class |
004 670 VZ |
format_se |
Aufsätze |
author-letter |
Petho, Zsombor |
doi_str_mv |
10.1007/s10836-021-05973-x |
normlink |
(ORCID)0000-0003-3054-4669 |
normlink_prefix_str_mv |
(orcid)0000-0003-3054-4669 |
dewey-full |
004 670 |
title_sort |
analysis of security vulnerability levels of in-vehicle network topologies applying graph representations |
title_auth |
Analysis of Security Vulnerability Levels of In-Vehicle Network Topologies Applying Graph Representations |
abstract |
Abstract This article investigates cybersecurity issues related to in-vehicle communication networks. In-vehicle communication network security is evaluated based on the protection characteristics of the network components and the topology of the network. The automotive communication network topologies are represented as undirected weighted graphs, and their vulnerability is estimated based on the specific characteristics of the generated graph. Thirteen different vehicle models have been investigated to compare the vulnerability levels of the in-vehicle network using the Dijkstra's shortest route algorithm. An important advantage of the proposed method is that it is in accordance with the most relevant security evaluation models. On the other hand, the newly introduced approach considers the Secure-by-Design concept principles. © The Author(s) 2022 |
abstractGer |
Abstract This article investigates cybersecurity issues related to in-vehicle communication networks. In-vehicle communication network security is evaluated based on the protection characteristics of the network components and the topology of the network. The automotive communication network topologies are represented as undirected weighted graphs, and their vulnerability is estimated based on the specific characteristics of the generated graph. Thirteen different vehicle models have been investigated to compare the vulnerability levels of the in-vehicle network using the Dijkstra's shortest route algorithm. An important advantage of the proposed method is that it is in accordance with the most relevant security evaluation models. On the other hand, the newly introduced approach considers the Secure-by-Design concept principles. © The Author(s) 2022 |
abstract_unstemmed |
Abstract This article investigates cybersecurity issues related to in-vehicle communication networks. In-vehicle communication network security is evaluated based on the protection characteristics of the network components and the topology of the network. The automotive communication network topologies are represented as undirected weighted graphs, and their vulnerability is estimated based on the specific characteristics of the generated graph. Thirteen different vehicle models have been investigated to compare the vulnerability levels of the in-vehicle network using the Dijkstra's shortest route algorithm. An important advantage of the proposed method is that it is in accordance with the most relevant security evaluation models. On the other hand, the newly introduced approach considers the Secure-by-Design concept principles. © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT |
container_issue |
5-6 |
title_short |
Analysis of Security Vulnerability Levels of In-Vehicle Network Topologies Applying Graph Representations |
url |
https://doi.org/10.1007/s10836-021-05973-x |
remote_bool |
false |
author2 |
Khan, Intiyaz Torok, Árpád |
author2Str |
Khan, Intiyaz Torok, Árpád |
ppnlink |
130869090 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10836-021-05973-x |
up_date |
2024-07-03T18:21:52.071Z |
_version_ |
1803583133662052352 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2078003247</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505213443.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10836-021-05973-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2078003247</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10836-021-05973-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Petho, Zsombor</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-3054-4669</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Analysis of Security Vulnerability Levels of In-Vehicle Network Topologies Applying Graph Representations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This article investigates cybersecurity issues related to in-vehicle communication networks. In-vehicle communication network security is evaluated based on the protection characteristics of the network components and the topology of the network. The automotive communication network topologies are represented as undirected weighted graphs, and their vulnerability is estimated based on the specific characteristics of the generated graph. Thirteen different vehicle models have been investigated to compare the vulnerability levels of the in-vehicle network using the Dijkstra's shortest route algorithm. An important advantage of the proposed method is that it is in accordance with the most relevant security evaluation models. On the other hand, the newly introduced approach considers the Secure-by-Design concept principles.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">In-vehicle network</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shortest path algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Vulnerability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Security analysis</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Khan, Intiyaz</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Torok, Árpád</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of electronic testing</subfield><subfield code="d">Springer US, 1990</subfield><subfield code="g">37(2021), 5-6 vom: Dez., Seite 613-621</subfield><subfield code="w">(DE-627)130869090</subfield><subfield code="w">(DE-600)1033317-4</subfield><subfield code="w">(DE-576)024991600</subfield><subfield code="x">0923-8174</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:37</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:5-6</subfield><subfield code="g">month:12</subfield><subfield code="g">pages:613-621</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10836-021-05973-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">37</subfield><subfield code="j">2021</subfield><subfield code="e">5-6</subfield><subfield code="c">12</subfield><subfield code="h">613-621</subfield></datafield></record></collection>
|
score |
7.402915 |