Pattern identification of different human joints for different human walking styles using inertial measurement unit (IMU) sensor
Abstract A bipedal walking robot is a kind of humanoid robot. It is suppose to mimics human behavior and designed to perform human specific tasks. Currently, humanoid robots are not capable to walk like human being. To perform the walking task, in the current work, human gait data of six different w...
Ausführliche Beschreibung
Autor*in: |
Semwal, Vijay Bhaskar [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Nature B.V. 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Artificial intelligence review - Springer Netherlands, 1987, 55(2021), 2 vom: 20. März, Seite 1149-1169 |
---|---|
Übergeordnetes Werk: |
volume:55 ; year:2021 ; number:2 ; day:20 ; month:03 ; pages:1149-1169 |
Links: |
---|
DOI / URN: |
10.1007/s10462-021-09979-x |
---|
Katalog-ID: |
OLC2078019593 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2078019593 | ||
003 | DE-627 | ||
005 | 20230505215054.0 | ||
007 | tu | ||
008 | 221220s2021 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10462-021-09979-x |2 doi | |
035 | |a (DE-627)OLC2078019593 | ||
035 | |a (DE-He213)s10462-021-09979-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 54.00 |2 bkl | ||
100 | 1 | |a Semwal, Vijay Bhaskar |e verfasserin |0 (orcid)0000-0003-0767-6057 |4 aut | |
245 | 1 | 0 | |a Pattern identification of different human joints for different human walking styles using inertial measurement unit (IMU) sensor |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Nature B.V. 2021 | ||
520 | |a Abstract A bipedal walking robot is a kind of humanoid robot. It is suppose to mimics human behavior and designed to perform human specific tasks. Currently, humanoid robots are not capable to walk like human being. To perform the walking task, in the current work, human gait data of six different walking styles named brisk walk, normal walk, very slow walk, medium walk, jogging and fast walk is collected through our configured IMU sensor and mobile-based accelerometers device. To capture the pattern for six different walking styles, data is extracted for hip, knee, ankle, shank, thigh and foot. A total six classes of walking activities are explored for clinical examination. The accelerometer is placed at center of the human body of 15 male and 10 female subjects. In the experimental setup, we have done exploratory analysis over the different gait capturing techniques, different gait features and different gait classification techniques. For the classification purpose, three state of art techniques are used as artificial neural network, extreme learning machine and deep neural network learning based CNN mode. The model classification accuracy is obtained as 87.4%, 88% and 92%, respectively. Here, WISDM activity data set is also used for verification purpose. | ||
650 | 4 | |a Clinical gait | |
650 | 4 | |a Connectionist learning | |
650 | 4 | |a Biometrics | |
650 | 4 | |a Human activities recognition | |
650 | 4 | |a Motion analysis | |
650 | 4 | |a Deep learning | |
700 | 1 | |a Gaud, Neha |4 aut | |
700 | 1 | |a Lalwani, Praveen |4 aut | |
700 | 1 | |a Bijalwan, Vishwanath |4 aut | |
700 | 1 | |a Alok, Abhay Kumar |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Artificial intelligence review |d Springer Netherlands, 1987 |g 55(2021), 2 vom: 20. März, Seite 1149-1169 |w (DE-627)129223018 |w (DE-600)56633-0 |w (DE-576)014458209 |x 0269-2821 |7 nnns |
773 | 1 | 8 | |g volume:55 |g year:2021 |g number:2 |g day:20 |g month:03 |g pages:1149-1169 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10462-021-09979-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
936 | b | k | |a 54.00 |q VZ |
951 | |a AR | ||
952 | |d 55 |j 2021 |e 2 |b 20 |c 03 |h 1149-1169 |
author_variant |
v b s vb vbs n g ng p l pl v b vb a k a ak aka |
---|---|
matchkey_str |
article:02692821:2021----::atrietfctoodfeetuajitfrifrnhmnaknsyeuign |
hierarchy_sort_str |
2021 |
bklnumber |
54.00 |
publishDate |
2021 |
allfields |
10.1007/s10462-021-09979-x doi (DE-627)OLC2078019593 (DE-He213)s10462-021-09979-x-p DE-627 ger DE-627 rakwb eng 004 VZ 54.00 bkl Semwal, Vijay Bhaskar verfasserin (orcid)0000-0003-0767-6057 aut Pattern identification of different human joints for different human walking styles using inertial measurement unit (IMU) sensor 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2021 Abstract A bipedal walking robot is a kind of humanoid robot. It is suppose to mimics human behavior and designed to perform human specific tasks. Currently, humanoid robots are not capable to walk like human being. To perform the walking task, in the current work, human gait data of six different walking styles named brisk walk, normal walk, very slow walk, medium walk, jogging and fast walk is collected through our configured IMU sensor and mobile-based accelerometers device. To capture the pattern for six different walking styles, data is extracted for hip, knee, ankle, shank, thigh and foot. A total six classes of walking activities are explored for clinical examination. The accelerometer is placed at center of the human body of 15 male and 10 female subjects. In the experimental setup, we have done exploratory analysis over the different gait capturing techniques, different gait features and different gait classification techniques. For the classification purpose, three state of art techniques are used as artificial neural network, extreme learning machine and deep neural network learning based CNN mode. The model classification accuracy is obtained as 87.4%, 88% and 92%, respectively. Here, WISDM activity data set is also used for verification purpose. Clinical gait Connectionist learning Biometrics Human activities recognition Motion analysis Deep learning Gaud, Neha aut Lalwani, Praveen aut Bijalwan, Vishwanath aut Alok, Abhay Kumar aut Enthalten in Artificial intelligence review Springer Netherlands, 1987 55(2021), 2 vom: 20. März, Seite 1149-1169 (DE-627)129223018 (DE-600)56633-0 (DE-576)014458209 0269-2821 nnns volume:55 year:2021 number:2 day:20 month:03 pages:1149-1169 https://doi.org/10.1007/s10462-021-09979-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT 54.00 VZ AR 55 2021 2 20 03 1149-1169 |
spelling |
10.1007/s10462-021-09979-x doi (DE-627)OLC2078019593 (DE-He213)s10462-021-09979-x-p DE-627 ger DE-627 rakwb eng 004 VZ 54.00 bkl Semwal, Vijay Bhaskar verfasserin (orcid)0000-0003-0767-6057 aut Pattern identification of different human joints for different human walking styles using inertial measurement unit (IMU) sensor 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2021 Abstract A bipedal walking robot is a kind of humanoid robot. It is suppose to mimics human behavior and designed to perform human specific tasks. Currently, humanoid robots are not capable to walk like human being. To perform the walking task, in the current work, human gait data of six different walking styles named brisk walk, normal walk, very slow walk, medium walk, jogging and fast walk is collected through our configured IMU sensor and mobile-based accelerometers device. To capture the pattern for six different walking styles, data is extracted for hip, knee, ankle, shank, thigh and foot. A total six classes of walking activities are explored for clinical examination. The accelerometer is placed at center of the human body of 15 male and 10 female subjects. In the experimental setup, we have done exploratory analysis over the different gait capturing techniques, different gait features and different gait classification techniques. For the classification purpose, three state of art techniques are used as artificial neural network, extreme learning machine and deep neural network learning based CNN mode. The model classification accuracy is obtained as 87.4%, 88% and 92%, respectively. Here, WISDM activity data set is also used for verification purpose. Clinical gait Connectionist learning Biometrics Human activities recognition Motion analysis Deep learning Gaud, Neha aut Lalwani, Praveen aut Bijalwan, Vishwanath aut Alok, Abhay Kumar aut Enthalten in Artificial intelligence review Springer Netherlands, 1987 55(2021), 2 vom: 20. März, Seite 1149-1169 (DE-627)129223018 (DE-600)56633-0 (DE-576)014458209 0269-2821 nnns volume:55 year:2021 number:2 day:20 month:03 pages:1149-1169 https://doi.org/10.1007/s10462-021-09979-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT 54.00 VZ AR 55 2021 2 20 03 1149-1169 |
allfields_unstemmed |
10.1007/s10462-021-09979-x doi (DE-627)OLC2078019593 (DE-He213)s10462-021-09979-x-p DE-627 ger DE-627 rakwb eng 004 VZ 54.00 bkl Semwal, Vijay Bhaskar verfasserin (orcid)0000-0003-0767-6057 aut Pattern identification of different human joints for different human walking styles using inertial measurement unit (IMU) sensor 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2021 Abstract A bipedal walking robot is a kind of humanoid robot. It is suppose to mimics human behavior and designed to perform human specific tasks. Currently, humanoid robots are not capable to walk like human being. To perform the walking task, in the current work, human gait data of six different walking styles named brisk walk, normal walk, very slow walk, medium walk, jogging and fast walk is collected through our configured IMU sensor and mobile-based accelerometers device. To capture the pattern for six different walking styles, data is extracted for hip, knee, ankle, shank, thigh and foot. A total six classes of walking activities are explored for clinical examination. The accelerometer is placed at center of the human body of 15 male and 10 female subjects. In the experimental setup, we have done exploratory analysis over the different gait capturing techniques, different gait features and different gait classification techniques. For the classification purpose, three state of art techniques are used as artificial neural network, extreme learning machine and deep neural network learning based CNN mode. The model classification accuracy is obtained as 87.4%, 88% and 92%, respectively. Here, WISDM activity data set is also used for verification purpose. Clinical gait Connectionist learning Biometrics Human activities recognition Motion analysis Deep learning Gaud, Neha aut Lalwani, Praveen aut Bijalwan, Vishwanath aut Alok, Abhay Kumar aut Enthalten in Artificial intelligence review Springer Netherlands, 1987 55(2021), 2 vom: 20. März, Seite 1149-1169 (DE-627)129223018 (DE-600)56633-0 (DE-576)014458209 0269-2821 nnns volume:55 year:2021 number:2 day:20 month:03 pages:1149-1169 https://doi.org/10.1007/s10462-021-09979-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT 54.00 VZ AR 55 2021 2 20 03 1149-1169 |
allfieldsGer |
10.1007/s10462-021-09979-x doi (DE-627)OLC2078019593 (DE-He213)s10462-021-09979-x-p DE-627 ger DE-627 rakwb eng 004 VZ 54.00 bkl Semwal, Vijay Bhaskar verfasserin (orcid)0000-0003-0767-6057 aut Pattern identification of different human joints for different human walking styles using inertial measurement unit (IMU) sensor 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2021 Abstract A bipedal walking robot is a kind of humanoid robot. It is suppose to mimics human behavior and designed to perform human specific tasks. Currently, humanoid robots are not capable to walk like human being. To perform the walking task, in the current work, human gait data of six different walking styles named brisk walk, normal walk, very slow walk, medium walk, jogging and fast walk is collected through our configured IMU sensor and mobile-based accelerometers device. To capture the pattern for six different walking styles, data is extracted for hip, knee, ankle, shank, thigh and foot. A total six classes of walking activities are explored for clinical examination. The accelerometer is placed at center of the human body of 15 male and 10 female subjects. In the experimental setup, we have done exploratory analysis over the different gait capturing techniques, different gait features and different gait classification techniques. For the classification purpose, three state of art techniques are used as artificial neural network, extreme learning machine and deep neural network learning based CNN mode. The model classification accuracy is obtained as 87.4%, 88% and 92%, respectively. Here, WISDM activity data set is also used for verification purpose. Clinical gait Connectionist learning Biometrics Human activities recognition Motion analysis Deep learning Gaud, Neha aut Lalwani, Praveen aut Bijalwan, Vishwanath aut Alok, Abhay Kumar aut Enthalten in Artificial intelligence review Springer Netherlands, 1987 55(2021), 2 vom: 20. März, Seite 1149-1169 (DE-627)129223018 (DE-600)56633-0 (DE-576)014458209 0269-2821 nnns volume:55 year:2021 number:2 day:20 month:03 pages:1149-1169 https://doi.org/10.1007/s10462-021-09979-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT 54.00 VZ AR 55 2021 2 20 03 1149-1169 |
allfieldsSound |
10.1007/s10462-021-09979-x doi (DE-627)OLC2078019593 (DE-He213)s10462-021-09979-x-p DE-627 ger DE-627 rakwb eng 004 VZ 54.00 bkl Semwal, Vijay Bhaskar verfasserin (orcid)0000-0003-0767-6057 aut Pattern identification of different human joints for different human walking styles using inertial measurement unit (IMU) sensor 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2021 Abstract A bipedal walking robot is a kind of humanoid robot. It is suppose to mimics human behavior and designed to perform human specific tasks. Currently, humanoid robots are not capable to walk like human being. To perform the walking task, in the current work, human gait data of six different walking styles named brisk walk, normal walk, very slow walk, medium walk, jogging and fast walk is collected through our configured IMU sensor and mobile-based accelerometers device. To capture the pattern for six different walking styles, data is extracted for hip, knee, ankle, shank, thigh and foot. A total six classes of walking activities are explored for clinical examination. The accelerometer is placed at center of the human body of 15 male and 10 female subjects. In the experimental setup, we have done exploratory analysis over the different gait capturing techniques, different gait features and different gait classification techniques. For the classification purpose, three state of art techniques are used as artificial neural network, extreme learning machine and deep neural network learning based CNN mode. The model classification accuracy is obtained as 87.4%, 88% and 92%, respectively. Here, WISDM activity data set is also used for verification purpose. Clinical gait Connectionist learning Biometrics Human activities recognition Motion analysis Deep learning Gaud, Neha aut Lalwani, Praveen aut Bijalwan, Vishwanath aut Alok, Abhay Kumar aut Enthalten in Artificial intelligence review Springer Netherlands, 1987 55(2021), 2 vom: 20. März, Seite 1149-1169 (DE-627)129223018 (DE-600)56633-0 (DE-576)014458209 0269-2821 nnns volume:55 year:2021 number:2 day:20 month:03 pages:1149-1169 https://doi.org/10.1007/s10462-021-09979-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT 54.00 VZ AR 55 2021 2 20 03 1149-1169 |
language |
English |
source |
Enthalten in Artificial intelligence review 55(2021), 2 vom: 20. März, Seite 1149-1169 volume:55 year:2021 number:2 day:20 month:03 pages:1149-1169 |
sourceStr |
Enthalten in Artificial intelligence review 55(2021), 2 vom: 20. März, Seite 1149-1169 volume:55 year:2021 number:2 day:20 month:03 pages:1149-1169 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Clinical gait Connectionist learning Biometrics Human activities recognition Motion analysis Deep learning |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Artificial intelligence review |
authorswithroles_txt_mv |
Semwal, Vijay Bhaskar @@aut@@ Gaud, Neha @@aut@@ Lalwani, Praveen @@aut@@ Bijalwan, Vishwanath @@aut@@ Alok, Abhay Kumar @@aut@@ |
publishDateDaySort_date |
2021-03-20T00:00:00Z |
hierarchy_top_id |
129223018 |
dewey-sort |
14 |
id |
OLC2078019593 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2078019593</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505215054.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10462-021-09979-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2078019593</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10462-021-09979-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Semwal, Vijay Bhaskar</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0767-6057</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pattern identification of different human joints for different human walking styles using inertial measurement unit (IMU) sensor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature B.V. 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A bipedal walking robot is a kind of humanoid robot. It is suppose to mimics human behavior and designed to perform human specific tasks. Currently, humanoid robots are not capable to walk like human being. To perform the walking task, in the current work, human gait data of six different walking styles named brisk walk, normal walk, very slow walk, medium walk, jogging and fast walk is collected through our configured IMU sensor and mobile-based accelerometers device. To capture the pattern for six different walking styles, data is extracted for hip, knee, ankle, shank, thigh and foot. A total six classes of walking activities are explored for clinical examination. The accelerometer is placed at center of the human body of 15 male and 10 female subjects. In the experimental setup, we have done exploratory analysis over the different gait capturing techniques, different gait features and different gait classification techniques. For the classification purpose, three state of art techniques are used as artificial neural network, extreme learning machine and deep neural network learning based CNN mode. The model classification accuracy is obtained as 87.4%, 88% and 92%, respectively. Here, WISDM activity data set is also used for verification purpose.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clinical gait</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Connectionist learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biometrics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Human activities recognition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Motion analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep learning</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gaud, Neha</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lalwani, Praveen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bijalwan, Vishwanath</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alok, Abhay Kumar</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Artificial intelligence review</subfield><subfield code="d">Springer Netherlands, 1987</subfield><subfield code="g">55(2021), 2 vom: 20. März, Seite 1149-1169</subfield><subfield code="w">(DE-627)129223018</subfield><subfield code="w">(DE-600)56633-0</subfield><subfield code="w">(DE-576)014458209</subfield><subfield code="x">0269-2821</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:2</subfield><subfield code="g">day:20</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:1149-1169</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10462-021-09979-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2021</subfield><subfield code="e">2</subfield><subfield code="b">20</subfield><subfield code="c">03</subfield><subfield code="h">1149-1169</subfield></datafield></record></collection>
|
author |
Semwal, Vijay Bhaskar |
spellingShingle |
Semwal, Vijay Bhaskar ddc 004 bkl 54.00 misc Clinical gait misc Connectionist learning misc Biometrics misc Human activities recognition misc Motion analysis misc Deep learning Pattern identification of different human joints for different human walking styles using inertial measurement unit (IMU) sensor |
authorStr |
Semwal, Vijay Bhaskar |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129223018 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0269-2821 |
topic_title |
004 VZ 54.00 bkl Pattern identification of different human joints for different human walking styles using inertial measurement unit (IMU) sensor Clinical gait Connectionist learning Biometrics Human activities recognition Motion analysis Deep learning |
topic |
ddc 004 bkl 54.00 misc Clinical gait misc Connectionist learning misc Biometrics misc Human activities recognition misc Motion analysis misc Deep learning |
topic_unstemmed |
ddc 004 bkl 54.00 misc Clinical gait misc Connectionist learning misc Biometrics misc Human activities recognition misc Motion analysis misc Deep learning |
topic_browse |
ddc 004 bkl 54.00 misc Clinical gait misc Connectionist learning misc Biometrics misc Human activities recognition misc Motion analysis misc Deep learning |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Artificial intelligence review |
hierarchy_parent_id |
129223018 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Artificial intelligence review |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129223018 (DE-600)56633-0 (DE-576)014458209 |
title |
Pattern identification of different human joints for different human walking styles using inertial measurement unit (IMU) sensor |
ctrlnum |
(DE-627)OLC2078019593 (DE-He213)s10462-021-09979-x-p |
title_full |
Pattern identification of different human joints for different human walking styles using inertial measurement unit (IMU) sensor |
author_sort |
Semwal, Vijay Bhaskar |
journal |
Artificial intelligence review |
journalStr |
Artificial intelligence review |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
1149 |
author_browse |
Semwal, Vijay Bhaskar Gaud, Neha Lalwani, Praveen Bijalwan, Vishwanath Alok, Abhay Kumar |
container_volume |
55 |
class |
004 VZ 54.00 bkl |
format_se |
Aufsätze |
author-letter |
Semwal, Vijay Bhaskar |
doi_str_mv |
10.1007/s10462-021-09979-x |
normlink |
(ORCID)0000-0003-0767-6057 |
normlink_prefix_str_mv |
(orcid)0000-0003-0767-6057 |
dewey-full |
004 |
title_sort |
pattern identification of different human joints for different human walking styles using inertial measurement unit (imu) sensor |
title_auth |
Pattern identification of different human joints for different human walking styles using inertial measurement unit (IMU) sensor |
abstract |
Abstract A bipedal walking robot is a kind of humanoid robot. It is suppose to mimics human behavior and designed to perform human specific tasks. Currently, humanoid robots are not capable to walk like human being. To perform the walking task, in the current work, human gait data of six different walking styles named brisk walk, normal walk, very slow walk, medium walk, jogging and fast walk is collected through our configured IMU sensor and mobile-based accelerometers device. To capture the pattern for six different walking styles, data is extracted for hip, knee, ankle, shank, thigh and foot. A total six classes of walking activities are explored for clinical examination. The accelerometer is placed at center of the human body of 15 male and 10 female subjects. In the experimental setup, we have done exploratory analysis over the different gait capturing techniques, different gait features and different gait classification techniques. For the classification purpose, three state of art techniques are used as artificial neural network, extreme learning machine and deep neural network learning based CNN mode. The model classification accuracy is obtained as 87.4%, 88% and 92%, respectively. Here, WISDM activity data set is also used for verification purpose. © The Author(s), under exclusive licence to Springer Nature B.V. 2021 |
abstractGer |
Abstract A bipedal walking robot is a kind of humanoid robot. It is suppose to mimics human behavior and designed to perform human specific tasks. Currently, humanoid robots are not capable to walk like human being. To perform the walking task, in the current work, human gait data of six different walking styles named brisk walk, normal walk, very slow walk, medium walk, jogging and fast walk is collected through our configured IMU sensor and mobile-based accelerometers device. To capture the pattern for six different walking styles, data is extracted for hip, knee, ankle, shank, thigh and foot. A total six classes of walking activities are explored for clinical examination. The accelerometer is placed at center of the human body of 15 male and 10 female subjects. In the experimental setup, we have done exploratory analysis over the different gait capturing techniques, different gait features and different gait classification techniques. For the classification purpose, three state of art techniques are used as artificial neural network, extreme learning machine and deep neural network learning based CNN mode. The model classification accuracy is obtained as 87.4%, 88% and 92%, respectively. Here, WISDM activity data set is also used for verification purpose. © The Author(s), under exclusive licence to Springer Nature B.V. 2021 |
abstract_unstemmed |
Abstract A bipedal walking robot is a kind of humanoid robot. It is suppose to mimics human behavior and designed to perform human specific tasks. Currently, humanoid robots are not capable to walk like human being. To perform the walking task, in the current work, human gait data of six different walking styles named brisk walk, normal walk, very slow walk, medium walk, jogging and fast walk is collected through our configured IMU sensor and mobile-based accelerometers device. To capture the pattern for six different walking styles, data is extracted for hip, knee, ankle, shank, thigh and foot. A total six classes of walking activities are explored for clinical examination. The accelerometer is placed at center of the human body of 15 male and 10 female subjects. In the experimental setup, we have done exploratory analysis over the different gait capturing techniques, different gait features and different gait classification techniques. For the classification purpose, three state of art techniques are used as artificial neural network, extreme learning machine and deep neural network learning based CNN mode. The model classification accuracy is obtained as 87.4%, 88% and 92%, respectively. Here, WISDM activity data set is also used for verification purpose. © The Author(s), under exclusive licence to Springer Nature B.V. 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT |
container_issue |
2 |
title_short |
Pattern identification of different human joints for different human walking styles using inertial measurement unit (IMU) sensor |
url |
https://doi.org/10.1007/s10462-021-09979-x |
remote_bool |
false |
author2 |
Gaud, Neha Lalwani, Praveen Bijalwan, Vishwanath Alok, Abhay Kumar |
author2Str |
Gaud, Neha Lalwani, Praveen Bijalwan, Vishwanath Alok, Abhay Kumar |
ppnlink |
129223018 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10462-021-09979-x |
up_date |
2024-07-03T18:26:34.313Z |
_version_ |
1803583429692882944 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2078019593</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505215054.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10462-021-09979-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2078019593</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10462-021-09979-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Semwal, Vijay Bhaskar</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0767-6057</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Pattern identification of different human joints for different human walking styles using inertial measurement unit (IMU) sensor</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature B.V. 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A bipedal walking robot is a kind of humanoid robot. It is suppose to mimics human behavior and designed to perform human specific tasks. Currently, humanoid robots are not capable to walk like human being. To perform the walking task, in the current work, human gait data of six different walking styles named brisk walk, normal walk, very slow walk, medium walk, jogging and fast walk is collected through our configured IMU sensor and mobile-based accelerometers device. To capture the pattern for six different walking styles, data is extracted for hip, knee, ankle, shank, thigh and foot. A total six classes of walking activities are explored for clinical examination. The accelerometer is placed at center of the human body of 15 male and 10 female subjects. In the experimental setup, we have done exploratory analysis over the different gait capturing techniques, different gait features and different gait classification techniques. For the classification purpose, three state of art techniques are used as artificial neural network, extreme learning machine and deep neural network learning based CNN mode. The model classification accuracy is obtained as 87.4%, 88% and 92%, respectively. Here, WISDM activity data set is also used for verification purpose.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clinical gait</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Connectionist learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Biometrics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Human activities recognition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Motion analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Deep learning</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gaud, Neha</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lalwani, Praveen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bijalwan, Vishwanath</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Alok, Abhay Kumar</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Artificial intelligence review</subfield><subfield code="d">Springer Netherlands, 1987</subfield><subfield code="g">55(2021), 2 vom: 20. März, Seite 1149-1169</subfield><subfield code="w">(DE-627)129223018</subfield><subfield code="w">(DE-600)56633-0</subfield><subfield code="w">(DE-576)014458209</subfield><subfield code="x">0269-2821</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:2</subfield><subfield code="g">day:20</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:1149-1169</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10462-021-09979-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2021</subfield><subfield code="e">2</subfield><subfield code="b">20</subfield><subfield code="c">03</subfield><subfield code="h">1149-1169</subfield></datafield></record></collection>
|
score |
7.401165 |