Notable Cooper-pair splitting in a double-quantum-dot structure with two superconductors
Abstract In this paper, we study the quantum transport properties in a double-quantum-dot circuit with two laterally-coupled superconductors. It is clearly found that with the adjustment of the phase difference between the superconductors, the electron tunneling and the local and crossed Andreev ref...
Ausführliche Beschreibung
Autor*in: |
Shi, Feng-Rong [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Applied physics. A, Materials science & processing - Springer Berlin Heidelberg, 1981, 128(2022), 3 vom: 14. Feb. |
---|---|
Übergeordnetes Werk: |
volume:128 ; year:2022 ; number:3 ; day:14 ; month:02 |
Links: |
---|
DOI / URN: |
10.1007/s00339-022-05346-x |
---|
Katalog-ID: |
OLC2078036412 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2078036412 | ||
003 | DE-627 | ||
005 | 20230506002855.0 | ||
007 | tu | ||
008 | 221220s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00339-022-05346-x |2 doi | |
035 | |a (DE-627)OLC2078036412 | ||
035 | |a (DE-He213)s00339-022-05346-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q VZ |
082 | 0 | 4 | |a 530 |q VZ |
084 | |a UA 9001.A |q VZ |2 rvk | ||
100 | 1 | |a Shi, Feng-Rong |e verfasserin |0 (orcid)0000-0002-1145-5874 |4 aut | |
245 | 1 | 0 | |a Notable Cooper-pair splitting in a double-quantum-dot structure with two superconductors |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022 | ||
520 | |a Abstract In this paper, we study the quantum transport properties in a double-quantum-dot circuit with two laterally-coupled superconductors. It is clearly found that with the adjustment of the phase difference between the superconductors, the electron tunneling and the local and crossed Andreev reflections display different characteristics. This phenomenon can be observed in the linear and nonlinear regimes, even in the presence of Coulomb interaction terms. Moreover, appropriate superconducting phase differences can efficiently enhance the crossed Andreev reflection, accompanied by the suppression of the local Andreev reflection and electron tunneling processes. Therefore, this setup can be used to be a promising device to realize the Cooper-pair splitting. | ||
650 | 4 | |a Cooper-pair splitting | |
650 | 4 | |a Quantum dot | |
650 | 4 | |a Superconductors | |
650 | 4 | |a Andreev reflections | |
773 | 0 | 8 | |i Enthalten in |t Applied physics. A, Materials science & processing |d Springer Berlin Heidelberg, 1981 |g 128(2022), 3 vom: 14. Feb. |w (DE-627)129861340 |w (DE-600)283365-7 |w (DE-576)015171930 |x 0947-8396 |7 nnns |
773 | 1 | 8 | |g volume:128 |g year:2022 |g number:3 |g day:14 |g month:02 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00339-022-05346-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
936 | r | v | |a UA 9001.A |
951 | |a AR | ||
952 | |d 128 |j 2022 |e 3 |b 14 |c 02 |
author_variant |
f r s frs |
---|---|
matchkey_str |
article:09478396:2022----::oalcoepisltigndulqatmosrcuei |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s00339-022-05346-x doi (DE-627)OLC2078036412 (DE-He213)s00339-022-05346-x-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001.A VZ rvk Shi, Feng-Rong verfasserin (orcid)0000-0002-1145-5874 aut Notable Cooper-pair splitting in a double-quantum-dot structure with two superconductors 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022 Abstract In this paper, we study the quantum transport properties in a double-quantum-dot circuit with two laterally-coupled superconductors. It is clearly found that with the adjustment of the phase difference between the superconductors, the electron tunneling and the local and crossed Andreev reflections display different characteristics. This phenomenon can be observed in the linear and nonlinear regimes, even in the presence of Coulomb interaction terms. Moreover, appropriate superconducting phase differences can efficiently enhance the crossed Andreev reflection, accompanied by the suppression of the local Andreev reflection and electron tunneling processes. Therefore, this setup can be used to be a promising device to realize the Cooper-pair splitting. Cooper-pair splitting Quantum dot Superconductors Andreev reflections Enthalten in Applied physics. A, Materials science & processing Springer Berlin Heidelberg, 1981 128(2022), 3 vom: 14. Feb. (DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 0947-8396 nnns volume:128 year:2022 number:3 day:14 month:02 https://doi.org/10.1007/s00339-022-05346-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_2018 GBV_ILN_4277 UA 9001.A AR 128 2022 3 14 02 |
spelling |
10.1007/s00339-022-05346-x doi (DE-627)OLC2078036412 (DE-He213)s00339-022-05346-x-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001.A VZ rvk Shi, Feng-Rong verfasserin (orcid)0000-0002-1145-5874 aut Notable Cooper-pair splitting in a double-quantum-dot structure with two superconductors 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022 Abstract In this paper, we study the quantum transport properties in a double-quantum-dot circuit with two laterally-coupled superconductors. It is clearly found that with the adjustment of the phase difference between the superconductors, the electron tunneling and the local and crossed Andreev reflections display different characteristics. This phenomenon can be observed in the linear and nonlinear regimes, even in the presence of Coulomb interaction terms. Moreover, appropriate superconducting phase differences can efficiently enhance the crossed Andreev reflection, accompanied by the suppression of the local Andreev reflection and electron tunneling processes. Therefore, this setup can be used to be a promising device to realize the Cooper-pair splitting. Cooper-pair splitting Quantum dot Superconductors Andreev reflections Enthalten in Applied physics. A, Materials science & processing Springer Berlin Heidelberg, 1981 128(2022), 3 vom: 14. Feb. (DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 0947-8396 nnns volume:128 year:2022 number:3 day:14 month:02 https://doi.org/10.1007/s00339-022-05346-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_2018 GBV_ILN_4277 UA 9001.A AR 128 2022 3 14 02 |
allfields_unstemmed |
10.1007/s00339-022-05346-x doi (DE-627)OLC2078036412 (DE-He213)s00339-022-05346-x-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001.A VZ rvk Shi, Feng-Rong verfasserin (orcid)0000-0002-1145-5874 aut Notable Cooper-pair splitting in a double-quantum-dot structure with two superconductors 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022 Abstract In this paper, we study the quantum transport properties in a double-quantum-dot circuit with two laterally-coupled superconductors. It is clearly found that with the adjustment of the phase difference between the superconductors, the electron tunneling and the local and crossed Andreev reflections display different characteristics. This phenomenon can be observed in the linear and nonlinear regimes, even in the presence of Coulomb interaction terms. Moreover, appropriate superconducting phase differences can efficiently enhance the crossed Andreev reflection, accompanied by the suppression of the local Andreev reflection and electron tunneling processes. Therefore, this setup can be used to be a promising device to realize the Cooper-pair splitting. Cooper-pair splitting Quantum dot Superconductors Andreev reflections Enthalten in Applied physics. A, Materials science & processing Springer Berlin Heidelberg, 1981 128(2022), 3 vom: 14. Feb. (DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 0947-8396 nnns volume:128 year:2022 number:3 day:14 month:02 https://doi.org/10.1007/s00339-022-05346-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_2018 GBV_ILN_4277 UA 9001.A AR 128 2022 3 14 02 |
allfieldsGer |
10.1007/s00339-022-05346-x doi (DE-627)OLC2078036412 (DE-He213)s00339-022-05346-x-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001.A VZ rvk Shi, Feng-Rong verfasserin (orcid)0000-0002-1145-5874 aut Notable Cooper-pair splitting in a double-quantum-dot structure with two superconductors 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022 Abstract In this paper, we study the quantum transport properties in a double-quantum-dot circuit with two laterally-coupled superconductors. It is clearly found that with the adjustment of the phase difference between the superconductors, the electron tunneling and the local and crossed Andreev reflections display different characteristics. This phenomenon can be observed in the linear and nonlinear regimes, even in the presence of Coulomb interaction terms. Moreover, appropriate superconducting phase differences can efficiently enhance the crossed Andreev reflection, accompanied by the suppression of the local Andreev reflection and electron tunneling processes. Therefore, this setup can be used to be a promising device to realize the Cooper-pair splitting. Cooper-pair splitting Quantum dot Superconductors Andreev reflections Enthalten in Applied physics. A, Materials science & processing Springer Berlin Heidelberg, 1981 128(2022), 3 vom: 14. Feb. (DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 0947-8396 nnns volume:128 year:2022 number:3 day:14 month:02 https://doi.org/10.1007/s00339-022-05346-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_2018 GBV_ILN_4277 UA 9001.A AR 128 2022 3 14 02 |
allfieldsSound |
10.1007/s00339-022-05346-x doi (DE-627)OLC2078036412 (DE-He213)s00339-022-05346-x-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001.A VZ rvk Shi, Feng-Rong verfasserin (orcid)0000-0002-1145-5874 aut Notable Cooper-pair splitting in a double-quantum-dot structure with two superconductors 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022 Abstract In this paper, we study the quantum transport properties in a double-quantum-dot circuit with two laterally-coupled superconductors. It is clearly found that with the adjustment of the phase difference between the superconductors, the electron tunneling and the local and crossed Andreev reflections display different characteristics. This phenomenon can be observed in the linear and nonlinear regimes, even in the presence of Coulomb interaction terms. Moreover, appropriate superconducting phase differences can efficiently enhance the crossed Andreev reflection, accompanied by the suppression of the local Andreev reflection and electron tunneling processes. Therefore, this setup can be used to be a promising device to realize the Cooper-pair splitting. Cooper-pair splitting Quantum dot Superconductors Andreev reflections Enthalten in Applied physics. A, Materials science & processing Springer Berlin Heidelberg, 1981 128(2022), 3 vom: 14. Feb. (DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 0947-8396 nnns volume:128 year:2022 number:3 day:14 month:02 https://doi.org/10.1007/s00339-022-05346-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_2018 GBV_ILN_4277 UA 9001.A AR 128 2022 3 14 02 |
language |
English |
source |
Enthalten in Applied physics. A, Materials science & processing 128(2022), 3 vom: 14. Feb. volume:128 year:2022 number:3 day:14 month:02 |
sourceStr |
Enthalten in Applied physics. A, Materials science & processing 128(2022), 3 vom: 14. Feb. volume:128 year:2022 number:3 day:14 month:02 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Cooper-pair splitting Quantum dot Superconductors Andreev reflections |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Applied physics. A, Materials science & processing |
authorswithroles_txt_mv |
Shi, Feng-Rong @@aut@@ |
publishDateDaySort_date |
2022-02-14T00:00:00Z |
hierarchy_top_id |
129861340 |
dewey-sort |
3530 |
id |
OLC2078036412 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2078036412</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506002855.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00339-022-05346-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2078036412</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00339-022-05346-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 9001.A</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shi, Feng-Rong</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1145-5874</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Notable Cooper-pair splitting in a double-quantum-dot structure with two superconductors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we study the quantum transport properties in a double-quantum-dot circuit with two laterally-coupled superconductors. It is clearly found that with the adjustment of the phase difference between the superconductors, the electron tunneling and the local and crossed Andreev reflections display different characteristics. This phenomenon can be observed in the linear and nonlinear regimes, even in the presence of Coulomb interaction terms. Moreover, appropriate superconducting phase differences can efficiently enhance the crossed Andreev reflection, accompanied by the suppression of the local Andreev reflection and electron tunneling processes. Therefore, this setup can be used to be a promising device to realize the Cooper-pair splitting.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cooper-pair splitting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum dot</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Superconductors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Andreev reflections</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied physics. A, Materials science & processing</subfield><subfield code="d">Springer Berlin Heidelberg, 1981</subfield><subfield code="g">128(2022), 3 vom: 14. Feb.</subfield><subfield code="w">(DE-627)129861340</subfield><subfield code="w">(DE-600)283365-7</subfield><subfield code="w">(DE-576)015171930</subfield><subfield code="x">0947-8396</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:128</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">day:14</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00339-022-05346-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 9001.A</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">128</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="b">14</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
author |
Shi, Feng-Rong |
spellingShingle |
Shi, Feng-Rong ddc 530 rvk UA 9001.A misc Cooper-pair splitting misc Quantum dot misc Superconductors misc Andreev reflections Notable Cooper-pair splitting in a double-quantum-dot structure with two superconductors |
authorStr |
Shi, Feng-Rong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129861340 |
format |
Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0947-8396 |
topic_title |
530 620 VZ 530 VZ UA 9001.A VZ rvk Notable Cooper-pair splitting in a double-quantum-dot structure with two superconductors Cooper-pair splitting Quantum dot Superconductors Andreev reflections |
topic |
ddc 530 rvk UA 9001.A misc Cooper-pair splitting misc Quantum dot misc Superconductors misc Andreev reflections |
topic_unstemmed |
ddc 530 rvk UA 9001.A misc Cooper-pair splitting misc Quantum dot misc Superconductors misc Andreev reflections |
topic_browse |
ddc 530 rvk UA 9001.A misc Cooper-pair splitting misc Quantum dot misc Superconductors misc Andreev reflections |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Applied physics. A, Materials science & processing |
hierarchy_parent_id |
129861340 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
Applied physics. A, Materials science & processing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 |
title |
Notable Cooper-pair splitting in a double-quantum-dot structure with two superconductors |
ctrlnum |
(DE-627)OLC2078036412 (DE-He213)s00339-022-05346-x-p |
title_full |
Notable Cooper-pair splitting in a double-quantum-dot structure with two superconductors |
author_sort |
Shi, Feng-Rong |
journal |
Applied physics. A, Materials science & processing |
journalStr |
Applied physics. A, Materials science & processing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Shi, Feng-Rong |
container_volume |
128 |
class |
530 620 VZ 530 VZ UA 9001.A VZ rvk |
format_se |
Aufsätze |
author-letter |
Shi, Feng-Rong |
doi_str_mv |
10.1007/s00339-022-05346-x |
normlink |
(ORCID)0000-0002-1145-5874 |
normlink_prefix_str_mv |
(orcid)0000-0002-1145-5874 |
dewey-full |
530 620 |
title_sort |
notable cooper-pair splitting in a double-quantum-dot structure with two superconductors |
title_auth |
Notable Cooper-pair splitting in a double-quantum-dot structure with two superconductors |
abstract |
Abstract In this paper, we study the quantum transport properties in a double-quantum-dot circuit with two laterally-coupled superconductors. It is clearly found that with the adjustment of the phase difference between the superconductors, the electron tunneling and the local and crossed Andreev reflections display different characteristics. This phenomenon can be observed in the linear and nonlinear regimes, even in the presence of Coulomb interaction terms. Moreover, appropriate superconducting phase differences can efficiently enhance the crossed Andreev reflection, accompanied by the suppression of the local Andreev reflection and electron tunneling processes. Therefore, this setup can be used to be a promising device to realize the Cooper-pair splitting. © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022 |
abstractGer |
Abstract In this paper, we study the quantum transport properties in a double-quantum-dot circuit with two laterally-coupled superconductors. It is clearly found that with the adjustment of the phase difference between the superconductors, the electron tunneling and the local and crossed Andreev reflections display different characteristics. This phenomenon can be observed in the linear and nonlinear regimes, even in the presence of Coulomb interaction terms. Moreover, appropriate superconducting phase differences can efficiently enhance the crossed Andreev reflection, accompanied by the suppression of the local Andreev reflection and electron tunneling processes. Therefore, this setup can be used to be a promising device to realize the Cooper-pair splitting. © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022 |
abstract_unstemmed |
Abstract In this paper, we study the quantum transport properties in a double-quantum-dot circuit with two laterally-coupled superconductors. It is clearly found that with the adjustment of the phase difference between the superconductors, the electron tunneling and the local and crossed Andreev reflections display different characteristics. This phenomenon can be observed in the linear and nonlinear regimes, even in the presence of Coulomb interaction terms. Moreover, appropriate superconducting phase differences can efficiently enhance the crossed Andreev reflection, accompanied by the suppression of the local Andreev reflection and electron tunneling processes. Therefore, this setup can be used to be a promising device to realize the Cooper-pair splitting. © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
3 |
title_short |
Notable Cooper-pair splitting in a double-quantum-dot structure with two superconductors |
url |
https://doi.org/10.1007/s00339-022-05346-x |
remote_bool |
false |
ppnlink |
129861340 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00339-022-05346-x |
up_date |
2024-07-03T18:30:56.011Z |
_version_ |
1803583704018190336 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2078036412</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506002855.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00339-022-05346-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2078036412</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00339-022-05346-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 9001.A</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shi, Feng-Rong</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-1145-5874</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Notable Cooper-pair splitting in a double-quantum-dot structure with two superconductors</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we study the quantum transport properties in a double-quantum-dot circuit with two laterally-coupled superconductors. It is clearly found that with the adjustment of the phase difference between the superconductors, the electron tunneling and the local and crossed Andreev reflections display different characteristics. This phenomenon can be observed in the linear and nonlinear regimes, even in the presence of Coulomb interaction terms. Moreover, appropriate superconducting phase differences can efficiently enhance the crossed Andreev reflection, accompanied by the suppression of the local Andreev reflection and electron tunneling processes. Therefore, this setup can be used to be a promising device to realize the Cooper-pair splitting.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cooper-pair splitting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum dot</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Superconductors</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Andreev reflections</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied physics. A, Materials science & processing</subfield><subfield code="d">Springer Berlin Heidelberg, 1981</subfield><subfield code="g">128(2022), 3 vom: 14. Feb.</subfield><subfield code="w">(DE-627)129861340</subfield><subfield code="w">(DE-600)283365-7</subfield><subfield code="w">(DE-576)015171930</subfield><subfield code="x">0947-8396</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:128</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">day:14</subfield><subfield code="g">month:02</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00339-022-05346-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 9001.A</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">128</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="b">14</subfield><subfield code="c">02</subfield></datafield></record></collection>
|
score |
7.3994036 |