The mixture design threshold accepting algorithm for generating $$\varvec{D}$$-optimal designs of the mixture models
Abstract This paper proposes a target specialized meta-heuristic optimization algorithm, called Mixture Design Threshold Accepting (MDTA) algorithm, which applies the idea of the Threshold Accepting to generate the corresponding approximate D-optimal designs for a wide range of mixture models, with...
Ausführliche Beschreibung
Autor*in: |
Wang, Haoyu [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Metrika - Springer Berlin Heidelberg, 1958, 85(2021), 3 vom: 15. Juli, Seite 345-371 |
---|---|
Übergeordnetes Werk: |
volume:85 ; year:2021 ; number:3 ; day:15 ; month:07 ; pages:345-371 |
Links: |
---|
DOI / URN: |
10.1007/s00184-021-00832-3 |
---|
Katalog-ID: |
OLC2078164615 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2078164615 | ||
003 | DE-627 | ||
005 | 20230505233102.0 | ||
007 | tu | ||
008 | 221220s2021 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00184-021-00832-3 |2 doi | |
035 | |a (DE-627)OLC2078164615 | ||
035 | |a (DE-He213)s00184-021-00832-3-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
100 | 1 | |a Wang, Haoyu |e verfasserin |0 (orcid)0000-0002-5450-4066 |4 aut | |
245 | 1 | 0 | |a The mixture design threshold accepting algorithm for generating $$\varvec{D}$$-optimal designs of the mixture models |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 | ||
520 | |a Abstract This paper proposes a target specialized meta-heuristic optimization algorithm, called Mixture Design Threshold Accepting (MDTA) algorithm, which applies the idea of the Threshold Accepting to generate the corresponding approximate D-optimal designs for a wide range of mixture models, with or without constraints imposed on the components. The MDTA algorithm is tested by many of common mixture models, among which some even have no solutions of the D-optimal design available in the literature. Other tests include 5 models with specific upper bound constraints. These results prove that the MDTA algorithm is very efficient in finding D-optimal designs for mixture models. In some scenarios it even outperforms the state-of-art algorithms, such as the ProjPSO algorithm and the REX algorithm. The source codes of the MDTA algorithm are freely available by writing to the first author. | ||
650 | 4 | |a Mixture experiment | |
650 | 4 | |a Optimal design | |
650 | 4 | |a Mixture model | |
650 | 4 | |a Meta-heuristic algorithm | |
700 | 1 | |a Zhang, Chongqi |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Metrika |d Springer Berlin Heidelberg, 1958 |g 85(2021), 3 vom: 15. Juli, Seite 345-371 |w (DE-627)12908171X |w (DE-600)3502-6 |w (DE-576)014414619 |x 0026-1335 |7 nnns |
773 | 1 | 8 | |g volume:85 |g year:2021 |g number:3 |g day:15 |g month:07 |g pages:345-371 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00184-021-00832-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-WIW | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 85 |j 2021 |e 3 |b 15 |c 07 |h 345-371 |
author_variant |
h w hw c z cz |
---|---|
matchkey_str |
article:00261335:2021----::hmxueeinhehlacpigloihfreeaigavcotm |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s00184-021-00832-3 doi (DE-627)OLC2078164615 (DE-He213)s00184-021-00832-3-p DE-627 ger DE-627 rakwb eng 510 VZ Wang, Haoyu verfasserin (orcid)0000-0002-5450-4066 aut The mixture design threshold accepting algorithm for generating $$\varvec{D}$$-optimal designs of the mixture models 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract This paper proposes a target specialized meta-heuristic optimization algorithm, called Mixture Design Threshold Accepting (MDTA) algorithm, which applies the idea of the Threshold Accepting to generate the corresponding approximate D-optimal designs for a wide range of mixture models, with or without constraints imposed on the components. The MDTA algorithm is tested by many of common mixture models, among which some even have no solutions of the D-optimal design available in the literature. Other tests include 5 models with specific upper bound constraints. These results prove that the MDTA algorithm is very efficient in finding D-optimal designs for mixture models. In some scenarios it even outperforms the state-of-art algorithms, such as the ProjPSO algorithm and the REX algorithm. The source codes of the MDTA algorithm are freely available by writing to the first author. Mixture experiment Optimal design Mixture model Meta-heuristic algorithm Zhang, Chongqi aut Enthalten in Metrika Springer Berlin Heidelberg, 1958 85(2021), 3 vom: 15. Juli, Seite 345-371 (DE-627)12908171X (DE-600)3502-6 (DE-576)014414619 0026-1335 nnns volume:85 year:2021 number:3 day:15 month:07 pages:345-371 https://doi.org/10.1007/s00184-021-00832-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4027 GBV_ILN_4277 AR 85 2021 3 15 07 345-371 |
spelling |
10.1007/s00184-021-00832-3 doi (DE-627)OLC2078164615 (DE-He213)s00184-021-00832-3-p DE-627 ger DE-627 rakwb eng 510 VZ Wang, Haoyu verfasserin (orcid)0000-0002-5450-4066 aut The mixture design threshold accepting algorithm for generating $$\varvec{D}$$-optimal designs of the mixture models 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract This paper proposes a target specialized meta-heuristic optimization algorithm, called Mixture Design Threshold Accepting (MDTA) algorithm, which applies the idea of the Threshold Accepting to generate the corresponding approximate D-optimal designs for a wide range of mixture models, with or without constraints imposed on the components. The MDTA algorithm is tested by many of common mixture models, among which some even have no solutions of the D-optimal design available in the literature. Other tests include 5 models with specific upper bound constraints. These results prove that the MDTA algorithm is very efficient in finding D-optimal designs for mixture models. In some scenarios it even outperforms the state-of-art algorithms, such as the ProjPSO algorithm and the REX algorithm. The source codes of the MDTA algorithm are freely available by writing to the first author. Mixture experiment Optimal design Mixture model Meta-heuristic algorithm Zhang, Chongqi aut Enthalten in Metrika Springer Berlin Heidelberg, 1958 85(2021), 3 vom: 15. Juli, Seite 345-371 (DE-627)12908171X (DE-600)3502-6 (DE-576)014414619 0026-1335 nnns volume:85 year:2021 number:3 day:15 month:07 pages:345-371 https://doi.org/10.1007/s00184-021-00832-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4027 GBV_ILN_4277 AR 85 2021 3 15 07 345-371 |
allfields_unstemmed |
10.1007/s00184-021-00832-3 doi (DE-627)OLC2078164615 (DE-He213)s00184-021-00832-3-p DE-627 ger DE-627 rakwb eng 510 VZ Wang, Haoyu verfasserin (orcid)0000-0002-5450-4066 aut The mixture design threshold accepting algorithm for generating $$\varvec{D}$$-optimal designs of the mixture models 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract This paper proposes a target specialized meta-heuristic optimization algorithm, called Mixture Design Threshold Accepting (MDTA) algorithm, which applies the idea of the Threshold Accepting to generate the corresponding approximate D-optimal designs for a wide range of mixture models, with or without constraints imposed on the components. The MDTA algorithm is tested by many of common mixture models, among which some even have no solutions of the D-optimal design available in the literature. Other tests include 5 models with specific upper bound constraints. These results prove that the MDTA algorithm is very efficient in finding D-optimal designs for mixture models. In some scenarios it even outperforms the state-of-art algorithms, such as the ProjPSO algorithm and the REX algorithm. The source codes of the MDTA algorithm are freely available by writing to the first author. Mixture experiment Optimal design Mixture model Meta-heuristic algorithm Zhang, Chongqi aut Enthalten in Metrika Springer Berlin Heidelberg, 1958 85(2021), 3 vom: 15. Juli, Seite 345-371 (DE-627)12908171X (DE-600)3502-6 (DE-576)014414619 0026-1335 nnns volume:85 year:2021 number:3 day:15 month:07 pages:345-371 https://doi.org/10.1007/s00184-021-00832-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4027 GBV_ILN_4277 AR 85 2021 3 15 07 345-371 |
allfieldsGer |
10.1007/s00184-021-00832-3 doi (DE-627)OLC2078164615 (DE-He213)s00184-021-00832-3-p DE-627 ger DE-627 rakwb eng 510 VZ Wang, Haoyu verfasserin (orcid)0000-0002-5450-4066 aut The mixture design threshold accepting algorithm for generating $$\varvec{D}$$-optimal designs of the mixture models 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract This paper proposes a target specialized meta-heuristic optimization algorithm, called Mixture Design Threshold Accepting (MDTA) algorithm, which applies the idea of the Threshold Accepting to generate the corresponding approximate D-optimal designs for a wide range of mixture models, with or without constraints imposed on the components. The MDTA algorithm is tested by many of common mixture models, among which some even have no solutions of the D-optimal design available in the literature. Other tests include 5 models with specific upper bound constraints. These results prove that the MDTA algorithm is very efficient in finding D-optimal designs for mixture models. In some scenarios it even outperforms the state-of-art algorithms, such as the ProjPSO algorithm and the REX algorithm. The source codes of the MDTA algorithm are freely available by writing to the first author. Mixture experiment Optimal design Mixture model Meta-heuristic algorithm Zhang, Chongqi aut Enthalten in Metrika Springer Berlin Heidelberg, 1958 85(2021), 3 vom: 15. Juli, Seite 345-371 (DE-627)12908171X (DE-600)3502-6 (DE-576)014414619 0026-1335 nnns volume:85 year:2021 number:3 day:15 month:07 pages:345-371 https://doi.org/10.1007/s00184-021-00832-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4027 GBV_ILN_4277 AR 85 2021 3 15 07 345-371 |
allfieldsSound |
10.1007/s00184-021-00832-3 doi (DE-627)OLC2078164615 (DE-He213)s00184-021-00832-3-p DE-627 ger DE-627 rakwb eng 510 VZ Wang, Haoyu verfasserin (orcid)0000-0002-5450-4066 aut The mixture design threshold accepting algorithm for generating $$\varvec{D}$$-optimal designs of the mixture models 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract This paper proposes a target specialized meta-heuristic optimization algorithm, called Mixture Design Threshold Accepting (MDTA) algorithm, which applies the idea of the Threshold Accepting to generate the corresponding approximate D-optimal designs for a wide range of mixture models, with or without constraints imposed on the components. The MDTA algorithm is tested by many of common mixture models, among which some even have no solutions of the D-optimal design available in the literature. Other tests include 5 models with specific upper bound constraints. These results prove that the MDTA algorithm is very efficient in finding D-optimal designs for mixture models. In some scenarios it even outperforms the state-of-art algorithms, such as the ProjPSO algorithm and the REX algorithm. The source codes of the MDTA algorithm are freely available by writing to the first author. Mixture experiment Optimal design Mixture model Meta-heuristic algorithm Zhang, Chongqi aut Enthalten in Metrika Springer Berlin Heidelberg, 1958 85(2021), 3 vom: 15. Juli, Seite 345-371 (DE-627)12908171X (DE-600)3502-6 (DE-576)014414619 0026-1335 nnns volume:85 year:2021 number:3 day:15 month:07 pages:345-371 https://doi.org/10.1007/s00184-021-00832-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4027 GBV_ILN_4277 AR 85 2021 3 15 07 345-371 |
language |
English |
source |
Enthalten in Metrika 85(2021), 3 vom: 15. Juli, Seite 345-371 volume:85 year:2021 number:3 day:15 month:07 pages:345-371 |
sourceStr |
Enthalten in Metrika 85(2021), 3 vom: 15. Juli, Seite 345-371 volume:85 year:2021 number:3 day:15 month:07 pages:345-371 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Mixture experiment Optimal design Mixture model Meta-heuristic algorithm |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Metrika |
authorswithroles_txt_mv |
Wang, Haoyu @@aut@@ Zhang, Chongqi @@aut@@ |
publishDateDaySort_date |
2021-07-15T00:00:00Z |
hierarchy_top_id |
12908171X |
dewey-sort |
3510 |
id |
OLC2078164615 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2078164615</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505233102.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00184-021-00832-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2078164615</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00184-021-00832-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Haoyu</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-5450-4066</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The mixture design threshold accepting algorithm for generating $$\varvec{D}$$-optimal designs of the mixture models</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper proposes a target specialized meta-heuristic optimization algorithm, called Mixture Design Threshold Accepting (MDTA) algorithm, which applies the idea of the Threshold Accepting to generate the corresponding approximate D-optimal designs for a wide range of mixture models, with or without constraints imposed on the components. The MDTA algorithm is tested by many of common mixture models, among which some even have no solutions of the D-optimal design available in the literature. Other tests include 5 models with specific upper bound constraints. These results prove that the MDTA algorithm is very efficient in finding D-optimal designs for mixture models. In some scenarios it even outperforms the state-of-art algorithms, such as the ProjPSO algorithm and the REX algorithm. The source codes of the MDTA algorithm are freely available by writing to the first author.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mixture experiment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimal design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mixture model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Meta-heuristic algorithm</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Chongqi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Metrika</subfield><subfield code="d">Springer Berlin Heidelberg, 1958</subfield><subfield code="g">85(2021), 3 vom: 15. Juli, Seite 345-371</subfield><subfield code="w">(DE-627)12908171X</subfield><subfield code="w">(DE-600)3502-6</subfield><subfield code="w">(DE-576)014414619</subfield><subfield code="x">0026-1335</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:85</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:3</subfield><subfield code="g">day:15</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:345-371</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00184-021-00832-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">85</subfield><subfield code="j">2021</subfield><subfield code="e">3</subfield><subfield code="b">15</subfield><subfield code="c">07</subfield><subfield code="h">345-371</subfield></datafield></record></collection>
|
author |
Wang, Haoyu |
spellingShingle |
Wang, Haoyu ddc 510 misc Mixture experiment misc Optimal design misc Mixture model misc Meta-heuristic algorithm The mixture design threshold accepting algorithm for generating $$\varvec{D}$$-optimal designs of the mixture models |
authorStr |
Wang, Haoyu |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)12908171X |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0026-1335 |
topic_title |
510 VZ The mixture design threshold accepting algorithm for generating $$\varvec{D}$$-optimal designs of the mixture models Mixture experiment Optimal design Mixture model Meta-heuristic algorithm |
topic |
ddc 510 misc Mixture experiment misc Optimal design misc Mixture model misc Meta-heuristic algorithm |
topic_unstemmed |
ddc 510 misc Mixture experiment misc Optimal design misc Mixture model misc Meta-heuristic algorithm |
topic_browse |
ddc 510 misc Mixture experiment misc Optimal design misc Mixture model misc Meta-heuristic algorithm |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Metrika |
hierarchy_parent_id |
12908171X |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Metrika |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)12908171X (DE-600)3502-6 (DE-576)014414619 |
title |
The mixture design threshold accepting algorithm for generating $$\varvec{D}$$-optimal designs of the mixture models |
ctrlnum |
(DE-627)OLC2078164615 (DE-He213)s00184-021-00832-3-p |
title_full |
The mixture design threshold accepting algorithm for generating $$\varvec{D}$$-optimal designs of the mixture models |
author_sort |
Wang, Haoyu |
journal |
Metrika |
journalStr |
Metrika |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
345 |
author_browse |
Wang, Haoyu Zhang, Chongqi |
container_volume |
85 |
class |
510 VZ |
format_se |
Aufsätze |
author-letter |
Wang, Haoyu |
doi_str_mv |
10.1007/s00184-021-00832-3 |
normlink |
(ORCID)0000-0002-5450-4066 |
normlink_prefix_str_mv |
(orcid)0000-0002-5450-4066 |
dewey-full |
510 |
title_sort |
the mixture design threshold accepting algorithm for generating $$\varvec{d}$$-optimal designs of the mixture models |
title_auth |
The mixture design threshold accepting algorithm for generating $$\varvec{D}$$-optimal designs of the mixture models |
abstract |
Abstract This paper proposes a target specialized meta-heuristic optimization algorithm, called Mixture Design Threshold Accepting (MDTA) algorithm, which applies the idea of the Threshold Accepting to generate the corresponding approximate D-optimal designs for a wide range of mixture models, with or without constraints imposed on the components. The MDTA algorithm is tested by many of common mixture models, among which some even have no solutions of the D-optimal design available in the literature. Other tests include 5 models with specific upper bound constraints. These results prove that the MDTA algorithm is very efficient in finding D-optimal designs for mixture models. In some scenarios it even outperforms the state-of-art algorithms, such as the ProjPSO algorithm and the REX algorithm. The source codes of the MDTA algorithm are freely available by writing to the first author. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
abstractGer |
Abstract This paper proposes a target specialized meta-heuristic optimization algorithm, called Mixture Design Threshold Accepting (MDTA) algorithm, which applies the idea of the Threshold Accepting to generate the corresponding approximate D-optimal designs for a wide range of mixture models, with or without constraints imposed on the components. The MDTA algorithm is tested by many of common mixture models, among which some even have no solutions of the D-optimal design available in the literature. Other tests include 5 models with specific upper bound constraints. These results prove that the MDTA algorithm is very efficient in finding D-optimal designs for mixture models. In some scenarios it even outperforms the state-of-art algorithms, such as the ProjPSO algorithm and the REX algorithm. The source codes of the MDTA algorithm are freely available by writing to the first author. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
abstract_unstemmed |
Abstract This paper proposes a target specialized meta-heuristic optimization algorithm, called Mixture Design Threshold Accepting (MDTA) algorithm, which applies the idea of the Threshold Accepting to generate the corresponding approximate D-optimal designs for a wide range of mixture models, with or without constraints imposed on the components. The MDTA algorithm is tested by many of common mixture models, among which some even have no solutions of the D-optimal design available in the literature. Other tests include 5 models with specific upper bound constraints. These results prove that the MDTA algorithm is very efficient in finding D-optimal designs for mixture models. In some scenarios it even outperforms the state-of-art algorithms, such as the ProjPSO algorithm and the REX algorithm. The source codes of the MDTA algorithm are freely available by writing to the first author. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4027 GBV_ILN_4277 |
container_issue |
3 |
title_short |
The mixture design threshold accepting algorithm for generating $$\varvec{D}$$-optimal designs of the mixture models |
url |
https://doi.org/10.1007/s00184-021-00832-3 |
remote_bool |
false |
author2 |
Zhang, Chongqi |
author2Str |
Zhang, Chongqi |
ppnlink |
12908171X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00184-021-00832-3 |
up_date |
2024-07-03T19:07:14.572Z |
_version_ |
1803585988404969472 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2078164615</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505233102.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00184-021-00832-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2078164615</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00184-021-00832-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Wang, Haoyu</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-5450-4066</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">The mixture design threshold accepting algorithm for generating $$\varvec{D}$$-optimal designs of the mixture models</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper proposes a target specialized meta-heuristic optimization algorithm, called Mixture Design Threshold Accepting (MDTA) algorithm, which applies the idea of the Threshold Accepting to generate the corresponding approximate D-optimal designs for a wide range of mixture models, with or without constraints imposed on the components. The MDTA algorithm is tested by many of common mixture models, among which some even have no solutions of the D-optimal design available in the literature. Other tests include 5 models with specific upper bound constraints. These results prove that the MDTA algorithm is very efficient in finding D-optimal designs for mixture models. In some scenarios it even outperforms the state-of-art algorithms, such as the ProjPSO algorithm and the REX algorithm. The source codes of the MDTA algorithm are freely available by writing to the first author.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mixture experiment</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimal design</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mixture model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Meta-heuristic algorithm</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Chongqi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Metrika</subfield><subfield code="d">Springer Berlin Heidelberg, 1958</subfield><subfield code="g">85(2021), 3 vom: 15. Juli, Seite 345-371</subfield><subfield code="w">(DE-627)12908171X</subfield><subfield code="w">(DE-600)3502-6</subfield><subfield code="w">(DE-576)014414619</subfield><subfield code="x">0026-1335</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:85</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:3</subfield><subfield code="g">day:15</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:345-371</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00184-021-00832-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">85</subfield><subfield code="j">2021</subfield><subfield code="e">3</subfield><subfield code="b">15</subfield><subfield code="c">07</subfield><subfield code="h">345-371</subfield></datafield></record></collection>
|
score |
7.4030848 |