Interaction Between Waves and Turbulence Within the Nocturnal Boundary Layer
Abstract The presence of waves is proven to be ubiquitous within nocturnal stable boundary layers over complex terrain, where turbulence is in a continuous, although weak, state of activity. The typical approach based on Reynolds decomposition is unable to disaggregate waves from turbulence contribu...
Ausführliche Beschreibung
Autor*in: |
Barbano, Francesco [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Boundary layer meteorology - Springer Netherlands, 1970, 183(2022), 1 vom: 01. Jan., Seite 35-65 |
---|---|
Übergeordnetes Werk: |
volume:183 ; year:2022 ; number:1 ; day:01 ; month:01 ; pages:35-65 |
Links: |
---|
DOI / URN: |
10.1007/s10546-021-00678-2 |
---|
Katalog-ID: |
OLC2078181943 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2078181943 | ||
003 | DE-627 | ||
005 | 20230505233750.0 | ||
007 | tu | ||
008 | 221220s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10546-021-00678-2 |2 doi | |
035 | |a (DE-627)OLC2078181943 | ||
035 | |a (DE-He213)s10546-021-00678-2-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 550 |q VZ |
084 | |a 16,13 |2 ssgn | ||
100 | 1 | |a Barbano, Francesco |e verfasserin |0 (orcid)0000-0002-4403-7070 |4 aut | |
245 | 1 | 0 | |a Interaction Between Waves and Turbulence Within the Nocturnal Boundary Layer |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s) 2021 | ||
520 | |a Abstract The presence of waves is proven to be ubiquitous within nocturnal stable boundary layers over complex terrain, where turbulence is in a continuous, although weak, state of activity. The typical approach based on Reynolds decomposition is unable to disaggregate waves from turbulence contributions, thus hiding any information about the production/destruction of turbulence energy injected/subtracted by the wave motion. We adopt a triple-decomposition approach to disaggregate the mean, wave, and turbulence contributions within near-surface boundary-layer flows, with the aim of unveiling the role of wave motion as a source and/or sink of turbulence kinetic and potential energies in the respective explicit budgets. By exploring the balance between buoyancy (driving waves) and shear (driving turbulence), a simple interpretation paradigm is introduced to distinguish two layers, namely the near-ground and far-ground sublayer, estimating where the turbulence kinetic energy can significantly feed or be fed by the wave. To prove this paradigm, a nocturnal valley flow is used as a case study to detail the role of wave motions on the kinetic and potential energy budgets within the two sublayers. From this dataset, the explicit kinetic and potential energy budgets are calculated, relying on a variance–covariance analysis to further comprehend the balance of energy production/destruction in each sublayer. With this investigation, we propose a simple interpretation scheme to capture and interpret the extent of the complex interaction between waves and turbulence in nocturnal stable boundary layers. | ||
650 | 4 | |a Buoyancy waves | |
650 | 4 | |a Small-scale turbulence | |
650 | 4 | |a Stable boundary layer | |
650 | 4 | |a Triple decomposition | |
700 | 1 | |a Brogno, Luigi |4 aut | |
700 | 1 | |a Tampieri, Francesco |4 aut | |
700 | 1 | |a Di Sabatino, Silvana |0 (orcid)0000-0003-2716-9247 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Boundary layer meteorology |d Springer Netherlands, 1970 |g 183(2022), 1 vom: 01. Jan., Seite 35-65 |w (DE-627)129610410 |w (DE-600)242879-9 |w (DE-576)015105679 |x 0006-8314 |7 nnns |
773 | 1 | 8 | |g volume:183 |g year:2022 |g number:1 |g day:01 |g month:01 |g pages:35-65 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10546-021-00678-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-GEO | ||
912 | |a SSG-OPC-GGO | ||
912 | |a SSG-OPC-GEO | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_381 | ||
912 | |a GBV_ILN_601 | ||
951 | |a AR | ||
952 | |d 183 |j 2022 |e 1 |b 01 |c 01 |h 35-65 |
author_variant |
f b fb l b lb f t ft s s d ss ssd |
---|---|
matchkey_str |
article:00068314:2022----::neatobtenaeadublneihnhnc |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s10546-021-00678-2 doi (DE-627)OLC2078181943 (DE-He213)s10546-021-00678-2-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Barbano, Francesco verfasserin (orcid)0000-0002-4403-7070 aut Interaction Between Waves and Turbulence Within the Nocturnal Boundary Layer 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2021 Abstract The presence of waves is proven to be ubiquitous within nocturnal stable boundary layers over complex terrain, where turbulence is in a continuous, although weak, state of activity. The typical approach based on Reynolds decomposition is unable to disaggregate waves from turbulence contributions, thus hiding any information about the production/destruction of turbulence energy injected/subtracted by the wave motion. We adopt a triple-decomposition approach to disaggregate the mean, wave, and turbulence contributions within near-surface boundary-layer flows, with the aim of unveiling the role of wave motion as a source and/or sink of turbulence kinetic and potential energies in the respective explicit budgets. By exploring the balance between buoyancy (driving waves) and shear (driving turbulence), a simple interpretation paradigm is introduced to distinguish two layers, namely the near-ground and far-ground sublayer, estimating where the turbulence kinetic energy can significantly feed or be fed by the wave. To prove this paradigm, a nocturnal valley flow is used as a case study to detail the role of wave motions on the kinetic and potential energy budgets within the two sublayers. From this dataset, the explicit kinetic and potential energy budgets are calculated, relying on a variance–covariance analysis to further comprehend the balance of energy production/destruction in each sublayer. With this investigation, we propose a simple interpretation scheme to capture and interpret the extent of the complex interaction between waves and turbulence in nocturnal stable boundary layers. Buoyancy waves Small-scale turbulence Stable boundary layer Triple decomposition Brogno, Luigi aut Tampieri, Francesco aut Di Sabatino, Silvana (orcid)0000-0003-2716-9247 aut Enthalten in Boundary layer meteorology Springer Netherlands, 1970 183(2022), 1 vom: 01. Jan., Seite 35-65 (DE-627)129610410 (DE-600)242879-9 (DE-576)015105679 0006-8314 nnns volume:183 year:2022 number:1 day:01 month:01 pages:35-65 https://doi.org/10.1007/s10546-021-00678-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_22 GBV_ILN_381 GBV_ILN_601 AR 183 2022 1 01 01 35-65 |
spelling |
10.1007/s10546-021-00678-2 doi (DE-627)OLC2078181943 (DE-He213)s10546-021-00678-2-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Barbano, Francesco verfasserin (orcid)0000-0002-4403-7070 aut Interaction Between Waves and Turbulence Within the Nocturnal Boundary Layer 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2021 Abstract The presence of waves is proven to be ubiquitous within nocturnal stable boundary layers over complex terrain, where turbulence is in a continuous, although weak, state of activity. The typical approach based on Reynolds decomposition is unable to disaggregate waves from turbulence contributions, thus hiding any information about the production/destruction of turbulence energy injected/subtracted by the wave motion. We adopt a triple-decomposition approach to disaggregate the mean, wave, and turbulence contributions within near-surface boundary-layer flows, with the aim of unveiling the role of wave motion as a source and/or sink of turbulence kinetic and potential energies in the respective explicit budgets. By exploring the balance between buoyancy (driving waves) and shear (driving turbulence), a simple interpretation paradigm is introduced to distinguish two layers, namely the near-ground and far-ground sublayer, estimating where the turbulence kinetic energy can significantly feed or be fed by the wave. To prove this paradigm, a nocturnal valley flow is used as a case study to detail the role of wave motions on the kinetic and potential energy budgets within the two sublayers. From this dataset, the explicit kinetic and potential energy budgets are calculated, relying on a variance–covariance analysis to further comprehend the balance of energy production/destruction in each sublayer. With this investigation, we propose a simple interpretation scheme to capture and interpret the extent of the complex interaction between waves and turbulence in nocturnal stable boundary layers. Buoyancy waves Small-scale turbulence Stable boundary layer Triple decomposition Brogno, Luigi aut Tampieri, Francesco aut Di Sabatino, Silvana (orcid)0000-0003-2716-9247 aut Enthalten in Boundary layer meteorology Springer Netherlands, 1970 183(2022), 1 vom: 01. Jan., Seite 35-65 (DE-627)129610410 (DE-600)242879-9 (DE-576)015105679 0006-8314 nnns volume:183 year:2022 number:1 day:01 month:01 pages:35-65 https://doi.org/10.1007/s10546-021-00678-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_22 GBV_ILN_381 GBV_ILN_601 AR 183 2022 1 01 01 35-65 |
allfields_unstemmed |
10.1007/s10546-021-00678-2 doi (DE-627)OLC2078181943 (DE-He213)s10546-021-00678-2-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Barbano, Francesco verfasserin (orcid)0000-0002-4403-7070 aut Interaction Between Waves and Turbulence Within the Nocturnal Boundary Layer 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2021 Abstract The presence of waves is proven to be ubiquitous within nocturnal stable boundary layers over complex terrain, where turbulence is in a continuous, although weak, state of activity. The typical approach based on Reynolds decomposition is unable to disaggregate waves from turbulence contributions, thus hiding any information about the production/destruction of turbulence energy injected/subtracted by the wave motion. We adopt a triple-decomposition approach to disaggregate the mean, wave, and turbulence contributions within near-surface boundary-layer flows, with the aim of unveiling the role of wave motion as a source and/or sink of turbulence kinetic and potential energies in the respective explicit budgets. By exploring the balance between buoyancy (driving waves) and shear (driving turbulence), a simple interpretation paradigm is introduced to distinguish two layers, namely the near-ground and far-ground sublayer, estimating where the turbulence kinetic energy can significantly feed or be fed by the wave. To prove this paradigm, a nocturnal valley flow is used as a case study to detail the role of wave motions on the kinetic and potential energy budgets within the two sublayers. From this dataset, the explicit kinetic and potential energy budgets are calculated, relying on a variance–covariance analysis to further comprehend the balance of energy production/destruction in each sublayer. With this investigation, we propose a simple interpretation scheme to capture and interpret the extent of the complex interaction between waves and turbulence in nocturnal stable boundary layers. Buoyancy waves Small-scale turbulence Stable boundary layer Triple decomposition Brogno, Luigi aut Tampieri, Francesco aut Di Sabatino, Silvana (orcid)0000-0003-2716-9247 aut Enthalten in Boundary layer meteorology Springer Netherlands, 1970 183(2022), 1 vom: 01. Jan., Seite 35-65 (DE-627)129610410 (DE-600)242879-9 (DE-576)015105679 0006-8314 nnns volume:183 year:2022 number:1 day:01 month:01 pages:35-65 https://doi.org/10.1007/s10546-021-00678-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_22 GBV_ILN_381 GBV_ILN_601 AR 183 2022 1 01 01 35-65 |
allfieldsGer |
10.1007/s10546-021-00678-2 doi (DE-627)OLC2078181943 (DE-He213)s10546-021-00678-2-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Barbano, Francesco verfasserin (orcid)0000-0002-4403-7070 aut Interaction Between Waves and Turbulence Within the Nocturnal Boundary Layer 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2021 Abstract The presence of waves is proven to be ubiquitous within nocturnal stable boundary layers over complex terrain, where turbulence is in a continuous, although weak, state of activity. The typical approach based on Reynolds decomposition is unable to disaggregate waves from turbulence contributions, thus hiding any information about the production/destruction of turbulence energy injected/subtracted by the wave motion. We adopt a triple-decomposition approach to disaggregate the mean, wave, and turbulence contributions within near-surface boundary-layer flows, with the aim of unveiling the role of wave motion as a source and/or sink of turbulence kinetic and potential energies in the respective explicit budgets. By exploring the balance between buoyancy (driving waves) and shear (driving turbulence), a simple interpretation paradigm is introduced to distinguish two layers, namely the near-ground and far-ground sublayer, estimating where the turbulence kinetic energy can significantly feed or be fed by the wave. To prove this paradigm, a nocturnal valley flow is used as a case study to detail the role of wave motions on the kinetic and potential energy budgets within the two sublayers. From this dataset, the explicit kinetic and potential energy budgets are calculated, relying on a variance–covariance analysis to further comprehend the balance of energy production/destruction in each sublayer. With this investigation, we propose a simple interpretation scheme to capture and interpret the extent of the complex interaction between waves and turbulence in nocturnal stable boundary layers. Buoyancy waves Small-scale turbulence Stable boundary layer Triple decomposition Brogno, Luigi aut Tampieri, Francesco aut Di Sabatino, Silvana (orcid)0000-0003-2716-9247 aut Enthalten in Boundary layer meteorology Springer Netherlands, 1970 183(2022), 1 vom: 01. Jan., Seite 35-65 (DE-627)129610410 (DE-600)242879-9 (DE-576)015105679 0006-8314 nnns volume:183 year:2022 number:1 day:01 month:01 pages:35-65 https://doi.org/10.1007/s10546-021-00678-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_22 GBV_ILN_381 GBV_ILN_601 AR 183 2022 1 01 01 35-65 |
allfieldsSound |
10.1007/s10546-021-00678-2 doi (DE-627)OLC2078181943 (DE-He213)s10546-021-00678-2-p DE-627 ger DE-627 rakwb eng 550 VZ 16,13 ssgn Barbano, Francesco verfasserin (orcid)0000-0002-4403-7070 aut Interaction Between Waves and Turbulence Within the Nocturnal Boundary Layer 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2021 Abstract The presence of waves is proven to be ubiquitous within nocturnal stable boundary layers over complex terrain, where turbulence is in a continuous, although weak, state of activity. The typical approach based on Reynolds decomposition is unable to disaggregate waves from turbulence contributions, thus hiding any information about the production/destruction of turbulence energy injected/subtracted by the wave motion. We adopt a triple-decomposition approach to disaggregate the mean, wave, and turbulence contributions within near-surface boundary-layer flows, with the aim of unveiling the role of wave motion as a source and/or sink of turbulence kinetic and potential energies in the respective explicit budgets. By exploring the balance between buoyancy (driving waves) and shear (driving turbulence), a simple interpretation paradigm is introduced to distinguish two layers, namely the near-ground and far-ground sublayer, estimating where the turbulence kinetic energy can significantly feed or be fed by the wave. To prove this paradigm, a nocturnal valley flow is used as a case study to detail the role of wave motions on the kinetic and potential energy budgets within the two sublayers. From this dataset, the explicit kinetic and potential energy budgets are calculated, relying on a variance–covariance analysis to further comprehend the balance of energy production/destruction in each sublayer. With this investigation, we propose a simple interpretation scheme to capture and interpret the extent of the complex interaction between waves and turbulence in nocturnal stable boundary layers. Buoyancy waves Small-scale turbulence Stable boundary layer Triple decomposition Brogno, Luigi aut Tampieri, Francesco aut Di Sabatino, Silvana (orcid)0000-0003-2716-9247 aut Enthalten in Boundary layer meteorology Springer Netherlands, 1970 183(2022), 1 vom: 01. Jan., Seite 35-65 (DE-627)129610410 (DE-600)242879-9 (DE-576)015105679 0006-8314 nnns volume:183 year:2022 number:1 day:01 month:01 pages:35-65 https://doi.org/10.1007/s10546-021-00678-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_22 GBV_ILN_381 GBV_ILN_601 AR 183 2022 1 01 01 35-65 |
language |
English |
source |
Enthalten in Boundary layer meteorology 183(2022), 1 vom: 01. Jan., Seite 35-65 volume:183 year:2022 number:1 day:01 month:01 pages:35-65 |
sourceStr |
Enthalten in Boundary layer meteorology 183(2022), 1 vom: 01. Jan., Seite 35-65 volume:183 year:2022 number:1 day:01 month:01 pages:35-65 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Buoyancy waves Small-scale turbulence Stable boundary layer Triple decomposition |
dewey-raw |
550 |
isfreeaccess_bool |
false |
container_title |
Boundary layer meteorology |
authorswithroles_txt_mv |
Barbano, Francesco @@aut@@ Brogno, Luigi @@aut@@ Tampieri, Francesco @@aut@@ Di Sabatino, Silvana @@aut@@ |
publishDateDaySort_date |
2022-01-01T00:00:00Z |
hierarchy_top_id |
129610410 |
dewey-sort |
3550 |
id |
OLC2078181943 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2078181943</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505233750.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10546-021-00678-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2078181943</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10546-021-00678-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16,13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Barbano, Francesco</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-4403-7070</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Interaction Between Waves and Turbulence Within the Nocturnal Boundary Layer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The presence of waves is proven to be ubiquitous within nocturnal stable boundary layers over complex terrain, where turbulence is in a continuous, although weak, state of activity. The typical approach based on Reynolds decomposition is unable to disaggregate waves from turbulence contributions, thus hiding any information about the production/destruction of turbulence energy injected/subtracted by the wave motion. We adopt a triple-decomposition approach to disaggregate the mean, wave, and turbulence contributions within near-surface boundary-layer flows, with the aim of unveiling the role of wave motion as a source and/or sink of turbulence kinetic and potential energies in the respective explicit budgets. By exploring the balance between buoyancy (driving waves) and shear (driving turbulence), a simple interpretation paradigm is introduced to distinguish two layers, namely the near-ground and far-ground sublayer, estimating where the turbulence kinetic energy can significantly feed or be fed by the wave. To prove this paradigm, a nocturnal valley flow is used as a case study to detail the role of wave motions on the kinetic and potential energy budgets within the two sublayers. From this dataset, the explicit kinetic and potential energy budgets are calculated, relying on a variance–covariance analysis to further comprehend the balance of energy production/destruction in each sublayer. With this investigation, we propose a simple interpretation scheme to capture and interpret the extent of the complex interaction between waves and turbulence in nocturnal stable boundary layers.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Buoyancy waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Small-scale turbulence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stable boundary layer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Triple decomposition</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brogno, Luigi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tampieri, Francesco</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Di Sabatino, Silvana</subfield><subfield code="0">(orcid)0000-0003-2716-9247</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Boundary layer meteorology</subfield><subfield code="d">Springer Netherlands, 1970</subfield><subfield code="g">183(2022), 1 vom: 01. Jan., Seite 35-65</subfield><subfield code="w">(DE-627)129610410</subfield><subfield code="w">(DE-600)242879-9</subfield><subfield code="w">(DE-576)015105679</subfield><subfield code="x">0006-8314</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:183</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:01</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:35-65</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10546-021-00678-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">183</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">01</subfield><subfield code="c">01</subfield><subfield code="h">35-65</subfield></datafield></record></collection>
|
author |
Barbano, Francesco |
spellingShingle |
Barbano, Francesco ddc 550 ssgn 16,13 misc Buoyancy waves misc Small-scale turbulence misc Stable boundary layer misc Triple decomposition Interaction Between Waves and Turbulence Within the Nocturnal Boundary Layer |
authorStr |
Barbano, Francesco |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129610410 |
format |
Article |
dewey-ones |
550 - Earth sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0006-8314 |
topic_title |
550 VZ 16,13 ssgn Interaction Between Waves and Turbulence Within the Nocturnal Boundary Layer Buoyancy waves Small-scale turbulence Stable boundary layer Triple decomposition |
topic |
ddc 550 ssgn 16,13 misc Buoyancy waves misc Small-scale turbulence misc Stable boundary layer misc Triple decomposition |
topic_unstemmed |
ddc 550 ssgn 16,13 misc Buoyancy waves misc Small-scale turbulence misc Stable boundary layer misc Triple decomposition |
topic_browse |
ddc 550 ssgn 16,13 misc Buoyancy waves misc Small-scale turbulence misc Stable boundary layer misc Triple decomposition |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Boundary layer meteorology |
hierarchy_parent_id |
129610410 |
dewey-tens |
550 - Earth sciences & geology |
hierarchy_top_title |
Boundary layer meteorology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129610410 (DE-600)242879-9 (DE-576)015105679 |
title |
Interaction Between Waves and Turbulence Within the Nocturnal Boundary Layer |
ctrlnum |
(DE-627)OLC2078181943 (DE-He213)s10546-021-00678-2-p |
title_full |
Interaction Between Waves and Turbulence Within the Nocturnal Boundary Layer |
author_sort |
Barbano, Francesco |
journal |
Boundary layer meteorology |
journalStr |
Boundary layer meteorology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
35 |
author_browse |
Barbano, Francesco Brogno, Luigi Tampieri, Francesco Di Sabatino, Silvana |
container_volume |
183 |
class |
550 VZ 16,13 ssgn |
format_se |
Aufsätze |
author-letter |
Barbano, Francesco |
doi_str_mv |
10.1007/s10546-021-00678-2 |
normlink |
(ORCID)0000-0002-4403-7070 (ORCID)0000-0003-2716-9247 |
normlink_prefix_str_mv |
(orcid)0000-0002-4403-7070 (orcid)0000-0003-2716-9247 |
dewey-full |
550 |
title_sort |
interaction between waves and turbulence within the nocturnal boundary layer |
title_auth |
Interaction Between Waves and Turbulence Within the Nocturnal Boundary Layer |
abstract |
Abstract The presence of waves is proven to be ubiquitous within nocturnal stable boundary layers over complex terrain, where turbulence is in a continuous, although weak, state of activity. The typical approach based on Reynolds decomposition is unable to disaggregate waves from turbulence contributions, thus hiding any information about the production/destruction of turbulence energy injected/subtracted by the wave motion. We adopt a triple-decomposition approach to disaggregate the mean, wave, and turbulence contributions within near-surface boundary-layer flows, with the aim of unveiling the role of wave motion as a source and/or sink of turbulence kinetic and potential energies in the respective explicit budgets. By exploring the balance between buoyancy (driving waves) and shear (driving turbulence), a simple interpretation paradigm is introduced to distinguish two layers, namely the near-ground and far-ground sublayer, estimating where the turbulence kinetic energy can significantly feed or be fed by the wave. To prove this paradigm, a nocturnal valley flow is used as a case study to detail the role of wave motions on the kinetic and potential energy budgets within the two sublayers. From this dataset, the explicit kinetic and potential energy budgets are calculated, relying on a variance–covariance analysis to further comprehend the balance of energy production/destruction in each sublayer. With this investigation, we propose a simple interpretation scheme to capture and interpret the extent of the complex interaction between waves and turbulence in nocturnal stable boundary layers. © The Author(s) 2021 |
abstractGer |
Abstract The presence of waves is proven to be ubiquitous within nocturnal stable boundary layers over complex terrain, where turbulence is in a continuous, although weak, state of activity. The typical approach based on Reynolds decomposition is unable to disaggregate waves from turbulence contributions, thus hiding any information about the production/destruction of turbulence energy injected/subtracted by the wave motion. We adopt a triple-decomposition approach to disaggregate the mean, wave, and turbulence contributions within near-surface boundary-layer flows, with the aim of unveiling the role of wave motion as a source and/or sink of turbulence kinetic and potential energies in the respective explicit budgets. By exploring the balance between buoyancy (driving waves) and shear (driving turbulence), a simple interpretation paradigm is introduced to distinguish two layers, namely the near-ground and far-ground sublayer, estimating where the turbulence kinetic energy can significantly feed or be fed by the wave. To prove this paradigm, a nocturnal valley flow is used as a case study to detail the role of wave motions on the kinetic and potential energy budgets within the two sublayers. From this dataset, the explicit kinetic and potential energy budgets are calculated, relying on a variance–covariance analysis to further comprehend the balance of energy production/destruction in each sublayer. With this investigation, we propose a simple interpretation scheme to capture and interpret the extent of the complex interaction between waves and turbulence in nocturnal stable boundary layers. © The Author(s) 2021 |
abstract_unstemmed |
Abstract The presence of waves is proven to be ubiquitous within nocturnal stable boundary layers over complex terrain, where turbulence is in a continuous, although weak, state of activity. The typical approach based on Reynolds decomposition is unable to disaggregate waves from turbulence contributions, thus hiding any information about the production/destruction of turbulence energy injected/subtracted by the wave motion. We adopt a triple-decomposition approach to disaggregate the mean, wave, and turbulence contributions within near-surface boundary-layer flows, with the aim of unveiling the role of wave motion as a source and/or sink of turbulence kinetic and potential energies in the respective explicit budgets. By exploring the balance between buoyancy (driving waves) and shear (driving turbulence), a simple interpretation paradigm is introduced to distinguish two layers, namely the near-ground and far-ground sublayer, estimating where the turbulence kinetic energy can significantly feed or be fed by the wave. To prove this paradigm, a nocturnal valley flow is used as a case study to detail the role of wave motions on the kinetic and potential energy budgets within the two sublayers. From this dataset, the explicit kinetic and potential energy budgets are calculated, relying on a variance–covariance analysis to further comprehend the balance of energy production/destruction in each sublayer. With this investigation, we propose a simple interpretation scheme to capture and interpret the extent of the complex interaction between waves and turbulence in nocturnal stable boundary layers. © The Author(s) 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-GEO SSG-OPC-GGO SSG-OPC-GEO GBV_ILN_22 GBV_ILN_381 GBV_ILN_601 |
container_issue |
1 |
title_short |
Interaction Between Waves and Turbulence Within the Nocturnal Boundary Layer |
url |
https://doi.org/10.1007/s10546-021-00678-2 |
remote_bool |
false |
author2 |
Brogno, Luigi Tampieri, Francesco Di Sabatino, Silvana |
author2Str |
Brogno, Luigi Tampieri, Francesco Di Sabatino, Silvana |
ppnlink |
129610410 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10546-021-00678-2 |
up_date |
2024-07-03T19:12:26.168Z |
_version_ |
1803586315138105344 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2078181943</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230505233750.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10546-021-00678-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2078181943</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10546-021-00678-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">550</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16,13</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Barbano, Francesco</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-4403-7070</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Interaction Between Waves and Turbulence Within the Nocturnal Boundary Layer</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The presence of waves is proven to be ubiquitous within nocturnal stable boundary layers over complex terrain, where turbulence is in a continuous, although weak, state of activity. The typical approach based on Reynolds decomposition is unable to disaggregate waves from turbulence contributions, thus hiding any information about the production/destruction of turbulence energy injected/subtracted by the wave motion. We adopt a triple-decomposition approach to disaggregate the mean, wave, and turbulence contributions within near-surface boundary-layer flows, with the aim of unveiling the role of wave motion as a source and/or sink of turbulence kinetic and potential energies in the respective explicit budgets. By exploring the balance between buoyancy (driving waves) and shear (driving turbulence), a simple interpretation paradigm is introduced to distinguish two layers, namely the near-ground and far-ground sublayer, estimating where the turbulence kinetic energy can significantly feed or be fed by the wave. To prove this paradigm, a nocturnal valley flow is used as a case study to detail the role of wave motions on the kinetic and potential energy budgets within the two sublayers. From this dataset, the explicit kinetic and potential energy budgets are calculated, relying on a variance–covariance analysis to further comprehend the balance of energy production/destruction in each sublayer. With this investigation, we propose a simple interpretation scheme to capture and interpret the extent of the complex interaction between waves and turbulence in nocturnal stable boundary layers.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Buoyancy waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Small-scale turbulence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stable boundary layer</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Triple decomposition</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Brogno, Luigi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tampieri, Francesco</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Di Sabatino, Silvana</subfield><subfield code="0">(orcid)0000-0003-2716-9247</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Boundary layer meteorology</subfield><subfield code="d">Springer Netherlands, 1970</subfield><subfield code="g">183(2022), 1 vom: 01. Jan., Seite 35-65</subfield><subfield code="w">(DE-627)129610410</subfield><subfield code="w">(DE-600)242879-9</subfield><subfield code="w">(DE-576)015105679</subfield><subfield code="x">0006-8314</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:183</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:01</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:35-65</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10546-021-00678-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GGO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-GEO</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_381</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_601</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">183</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">01</subfield><subfield code="c">01</subfield><subfield code="h">35-65</subfield></datafield></record></collection>
|
score |
7.4014387 |