Triple Hill’s Vortex Synthetic Eddy Method
Abstract The generation of initial or inflow synthetic turbulent velocity or scalar fields reproducing statistical characteristics of realistic turbulence is still a challenge. The synthetic eddy method, previously introduced in the context of inflow conditions for large eddy simulations, is based o...
Ausführliche Beschreibung
Autor*in: |
Haywood, John S. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Nature B.V. 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Flow, turbulence and combustion - Springer Netherlands, 1998, 108(2021), 3 vom: 07. Aug., Seite 627-659 |
---|---|
Übergeordnetes Werk: |
volume:108 ; year:2021 ; number:3 ; day:07 ; month:08 ; pages:627-659 |
Links: |
---|
DOI / URN: |
10.1007/s10494-021-00289-4 |
---|
Katalog-ID: |
OLC2078201243 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2078201243 | ||
003 | DE-627 | ||
005 | 20230512182035.0 | ||
007 | tu | ||
008 | 221220s2021 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10494-021-00289-4 |2 doi | |
035 | |a (DE-627)OLC2078201243 | ||
035 | |a (DE-He213)s10494-021-00289-4-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 500 |a 600 |q VZ |
084 | |a 50.34$jGasdynamik$jAerodynamik |2 bkl | ||
084 | |a 52.51$jFeuerungstechnik |2 bkl | ||
100 | 1 | |a Haywood, John S. |e verfasserin |0 (orcid)0000-0002-5740-6875 |4 aut | |
245 | 1 | 0 | |a Triple Hill’s Vortex Synthetic Eddy Method |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Nature B.V. 2021 | ||
520 | |a Abstract The generation of initial or inflow synthetic turbulent velocity or scalar fields reproducing statistical characteristics of realistic turbulence is still a challenge. The synthetic eddy method, previously introduced in the context of inflow conditions for large eddy simulations, is based on the assumption that turbulence can be regarded as a superposition of coherent structures. In this paper, a new type of synthetic eddy method is proposed, where the fundamental eddy is constructed by superposing three Hill’s vortices, with their axes orthogonal to each other. A distribution of Hill’s vortices is used to synthesize an anisotropic turbulent velocity field that satisfies the incompressibility condition and match a given Reynolds stress tensor. The amplitudes of the three vortices that form the fundamental eddy are calculated from known Reynolds stress profiles through a transformation from the physical reference frame to the principal-axis reference frame. In this way, divergence-free anisotropic turbulent velocity fields are obtained that can reproduce a given Reynolds stress tensor. The model was tested on both isotropic and anisotropic turbulent velocity fields, in the framework of grid turbulence decay and turbulent channel flow, respectively. The transition from artificial to realistic turbulence in the proximity to the inflow boundary was found to be small in all test cases that were considered. | ||
650 | 4 | |a Synthetic turbulence | |
650 | 4 | |a Synthetic eddy method | |
650 | 4 | |a Turbulent inflow | |
700 | 1 | |a Sescu, Adrian |4 aut | |
700 | 1 | |a Bhushan, Shanti |4 aut | |
700 | 1 | |a Kees, Christopher E. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Flow, turbulence and combustion |d Springer Netherlands, 1998 |g 108(2021), 3 vom: 07. Aug., Seite 627-659 |w (DE-627)254303641 |w (DE-600)1463163-5 |w (DE-576)074754068 |x 1386-6184 |7 nnns |
773 | 1 | 8 | |g volume:108 |g year:2021 |g number:3 |g day:07 |g month:08 |g pages:627-659 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10494-021-00289-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_2014 | ||
912 | |a GBV_ILN_4700 | ||
936 | b | k | |a 50.34$jGasdynamik$jAerodynamik |q VZ |0 106419498 |0 (DE-625)106419498 |
936 | b | k | |a 52.51$jFeuerungstechnik |q VZ |0 106419935 |0 (DE-625)106419935 |
951 | |a AR | ||
952 | |d 108 |j 2021 |e 3 |b 07 |c 08 |h 627-659 |
author_variant |
j s h js jsh a s as s b sb c e k ce cek |
---|---|
matchkey_str |
article:13866184:2021----::rpeilvresnhtc |
hierarchy_sort_str |
2021 |
bklnumber |
50.34$jGasdynamik$jAerodynamik 52.51$jFeuerungstechnik |
publishDate |
2021 |
allfields |
10.1007/s10494-021-00289-4 doi (DE-627)OLC2078201243 (DE-He213)s10494-021-00289-4-p DE-627 ger DE-627 rakwb eng 500 600 VZ 50.34$jGasdynamik$jAerodynamik bkl 52.51$jFeuerungstechnik bkl Haywood, John S. verfasserin (orcid)0000-0002-5740-6875 aut Triple Hill’s Vortex Synthetic Eddy Method 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2021 Abstract The generation of initial or inflow synthetic turbulent velocity or scalar fields reproducing statistical characteristics of realistic turbulence is still a challenge. The synthetic eddy method, previously introduced in the context of inflow conditions for large eddy simulations, is based on the assumption that turbulence can be regarded as a superposition of coherent structures. In this paper, a new type of synthetic eddy method is proposed, where the fundamental eddy is constructed by superposing three Hill’s vortices, with their axes orthogonal to each other. A distribution of Hill’s vortices is used to synthesize an anisotropic turbulent velocity field that satisfies the incompressibility condition and match a given Reynolds stress tensor. The amplitudes of the three vortices that form the fundamental eddy are calculated from known Reynolds stress profiles through a transformation from the physical reference frame to the principal-axis reference frame. In this way, divergence-free anisotropic turbulent velocity fields are obtained that can reproduce a given Reynolds stress tensor. The model was tested on both isotropic and anisotropic turbulent velocity fields, in the framework of grid turbulence decay and turbulent channel flow, respectively. The transition from artificial to realistic turbulence in the proximity to the inflow boundary was found to be small in all test cases that were considered. Synthetic turbulence Synthetic eddy method Turbulent inflow Sescu, Adrian aut Bhushan, Shanti aut Kees, Christopher E. aut Enthalten in Flow, turbulence and combustion Springer Netherlands, 1998 108(2021), 3 vom: 07. Aug., Seite 627-659 (DE-627)254303641 (DE-600)1463163-5 (DE-576)074754068 1386-6184 nnns volume:108 year:2021 number:3 day:07 month:08 pages:627-659 https://doi.org/10.1007/s10494-021-00289-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_11 GBV_ILN_2014 GBV_ILN_4700 50.34$jGasdynamik$jAerodynamik VZ 106419498 (DE-625)106419498 52.51$jFeuerungstechnik VZ 106419935 (DE-625)106419935 AR 108 2021 3 07 08 627-659 |
spelling |
10.1007/s10494-021-00289-4 doi (DE-627)OLC2078201243 (DE-He213)s10494-021-00289-4-p DE-627 ger DE-627 rakwb eng 500 600 VZ 50.34$jGasdynamik$jAerodynamik bkl 52.51$jFeuerungstechnik bkl Haywood, John S. verfasserin (orcid)0000-0002-5740-6875 aut Triple Hill’s Vortex Synthetic Eddy Method 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2021 Abstract The generation of initial or inflow synthetic turbulent velocity or scalar fields reproducing statistical characteristics of realistic turbulence is still a challenge. The synthetic eddy method, previously introduced in the context of inflow conditions for large eddy simulations, is based on the assumption that turbulence can be regarded as a superposition of coherent structures. In this paper, a new type of synthetic eddy method is proposed, where the fundamental eddy is constructed by superposing three Hill’s vortices, with their axes orthogonal to each other. A distribution of Hill’s vortices is used to synthesize an anisotropic turbulent velocity field that satisfies the incompressibility condition and match a given Reynolds stress tensor. The amplitudes of the three vortices that form the fundamental eddy are calculated from known Reynolds stress profiles through a transformation from the physical reference frame to the principal-axis reference frame. In this way, divergence-free anisotropic turbulent velocity fields are obtained that can reproduce a given Reynolds stress tensor. The model was tested on both isotropic and anisotropic turbulent velocity fields, in the framework of grid turbulence decay and turbulent channel flow, respectively. The transition from artificial to realistic turbulence in the proximity to the inflow boundary was found to be small in all test cases that were considered. Synthetic turbulence Synthetic eddy method Turbulent inflow Sescu, Adrian aut Bhushan, Shanti aut Kees, Christopher E. aut Enthalten in Flow, turbulence and combustion Springer Netherlands, 1998 108(2021), 3 vom: 07. Aug., Seite 627-659 (DE-627)254303641 (DE-600)1463163-5 (DE-576)074754068 1386-6184 nnns volume:108 year:2021 number:3 day:07 month:08 pages:627-659 https://doi.org/10.1007/s10494-021-00289-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_11 GBV_ILN_2014 GBV_ILN_4700 50.34$jGasdynamik$jAerodynamik VZ 106419498 (DE-625)106419498 52.51$jFeuerungstechnik VZ 106419935 (DE-625)106419935 AR 108 2021 3 07 08 627-659 |
allfields_unstemmed |
10.1007/s10494-021-00289-4 doi (DE-627)OLC2078201243 (DE-He213)s10494-021-00289-4-p DE-627 ger DE-627 rakwb eng 500 600 VZ 50.34$jGasdynamik$jAerodynamik bkl 52.51$jFeuerungstechnik bkl Haywood, John S. verfasserin (orcid)0000-0002-5740-6875 aut Triple Hill’s Vortex Synthetic Eddy Method 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2021 Abstract The generation of initial or inflow synthetic turbulent velocity or scalar fields reproducing statistical characteristics of realistic turbulence is still a challenge. The synthetic eddy method, previously introduced in the context of inflow conditions for large eddy simulations, is based on the assumption that turbulence can be regarded as a superposition of coherent structures. In this paper, a new type of synthetic eddy method is proposed, where the fundamental eddy is constructed by superposing three Hill’s vortices, with their axes orthogonal to each other. A distribution of Hill’s vortices is used to synthesize an anisotropic turbulent velocity field that satisfies the incompressibility condition and match a given Reynolds stress tensor. The amplitudes of the three vortices that form the fundamental eddy are calculated from known Reynolds stress profiles through a transformation from the physical reference frame to the principal-axis reference frame. In this way, divergence-free anisotropic turbulent velocity fields are obtained that can reproduce a given Reynolds stress tensor. The model was tested on both isotropic and anisotropic turbulent velocity fields, in the framework of grid turbulence decay and turbulent channel flow, respectively. The transition from artificial to realistic turbulence in the proximity to the inflow boundary was found to be small in all test cases that were considered. Synthetic turbulence Synthetic eddy method Turbulent inflow Sescu, Adrian aut Bhushan, Shanti aut Kees, Christopher E. aut Enthalten in Flow, turbulence and combustion Springer Netherlands, 1998 108(2021), 3 vom: 07. Aug., Seite 627-659 (DE-627)254303641 (DE-600)1463163-5 (DE-576)074754068 1386-6184 nnns volume:108 year:2021 number:3 day:07 month:08 pages:627-659 https://doi.org/10.1007/s10494-021-00289-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_11 GBV_ILN_2014 GBV_ILN_4700 50.34$jGasdynamik$jAerodynamik VZ 106419498 (DE-625)106419498 52.51$jFeuerungstechnik VZ 106419935 (DE-625)106419935 AR 108 2021 3 07 08 627-659 |
allfieldsGer |
10.1007/s10494-021-00289-4 doi (DE-627)OLC2078201243 (DE-He213)s10494-021-00289-4-p DE-627 ger DE-627 rakwb eng 500 600 VZ 50.34$jGasdynamik$jAerodynamik bkl 52.51$jFeuerungstechnik bkl Haywood, John S. verfasserin (orcid)0000-0002-5740-6875 aut Triple Hill’s Vortex Synthetic Eddy Method 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2021 Abstract The generation of initial or inflow synthetic turbulent velocity or scalar fields reproducing statistical characteristics of realistic turbulence is still a challenge. The synthetic eddy method, previously introduced in the context of inflow conditions for large eddy simulations, is based on the assumption that turbulence can be regarded as a superposition of coherent structures. In this paper, a new type of synthetic eddy method is proposed, where the fundamental eddy is constructed by superposing three Hill’s vortices, with their axes orthogonal to each other. A distribution of Hill’s vortices is used to synthesize an anisotropic turbulent velocity field that satisfies the incompressibility condition and match a given Reynolds stress tensor. The amplitudes of the three vortices that form the fundamental eddy are calculated from known Reynolds stress profiles through a transformation from the physical reference frame to the principal-axis reference frame. In this way, divergence-free anisotropic turbulent velocity fields are obtained that can reproduce a given Reynolds stress tensor. The model was tested on both isotropic and anisotropic turbulent velocity fields, in the framework of grid turbulence decay and turbulent channel flow, respectively. The transition from artificial to realistic turbulence in the proximity to the inflow boundary was found to be small in all test cases that were considered. Synthetic turbulence Synthetic eddy method Turbulent inflow Sescu, Adrian aut Bhushan, Shanti aut Kees, Christopher E. aut Enthalten in Flow, turbulence and combustion Springer Netherlands, 1998 108(2021), 3 vom: 07. Aug., Seite 627-659 (DE-627)254303641 (DE-600)1463163-5 (DE-576)074754068 1386-6184 nnns volume:108 year:2021 number:3 day:07 month:08 pages:627-659 https://doi.org/10.1007/s10494-021-00289-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_11 GBV_ILN_2014 GBV_ILN_4700 50.34$jGasdynamik$jAerodynamik VZ 106419498 (DE-625)106419498 52.51$jFeuerungstechnik VZ 106419935 (DE-625)106419935 AR 108 2021 3 07 08 627-659 |
allfieldsSound |
10.1007/s10494-021-00289-4 doi (DE-627)OLC2078201243 (DE-He213)s10494-021-00289-4-p DE-627 ger DE-627 rakwb eng 500 600 VZ 50.34$jGasdynamik$jAerodynamik bkl 52.51$jFeuerungstechnik bkl Haywood, John S. verfasserin (orcid)0000-0002-5740-6875 aut Triple Hill’s Vortex Synthetic Eddy Method 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2021 Abstract The generation of initial or inflow synthetic turbulent velocity or scalar fields reproducing statistical characteristics of realistic turbulence is still a challenge. The synthetic eddy method, previously introduced in the context of inflow conditions for large eddy simulations, is based on the assumption that turbulence can be regarded as a superposition of coherent structures. In this paper, a new type of synthetic eddy method is proposed, where the fundamental eddy is constructed by superposing three Hill’s vortices, with their axes orthogonal to each other. A distribution of Hill’s vortices is used to synthesize an anisotropic turbulent velocity field that satisfies the incompressibility condition and match a given Reynolds stress tensor. The amplitudes of the three vortices that form the fundamental eddy are calculated from known Reynolds stress profiles through a transformation from the physical reference frame to the principal-axis reference frame. In this way, divergence-free anisotropic turbulent velocity fields are obtained that can reproduce a given Reynolds stress tensor. The model was tested on both isotropic and anisotropic turbulent velocity fields, in the framework of grid turbulence decay and turbulent channel flow, respectively. The transition from artificial to realistic turbulence in the proximity to the inflow boundary was found to be small in all test cases that were considered. Synthetic turbulence Synthetic eddy method Turbulent inflow Sescu, Adrian aut Bhushan, Shanti aut Kees, Christopher E. aut Enthalten in Flow, turbulence and combustion Springer Netherlands, 1998 108(2021), 3 vom: 07. Aug., Seite 627-659 (DE-627)254303641 (DE-600)1463163-5 (DE-576)074754068 1386-6184 nnns volume:108 year:2021 number:3 day:07 month:08 pages:627-659 https://doi.org/10.1007/s10494-021-00289-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_11 GBV_ILN_2014 GBV_ILN_4700 50.34$jGasdynamik$jAerodynamik VZ 106419498 (DE-625)106419498 52.51$jFeuerungstechnik VZ 106419935 (DE-625)106419935 AR 108 2021 3 07 08 627-659 |
language |
English |
source |
Enthalten in Flow, turbulence and combustion 108(2021), 3 vom: 07. Aug., Seite 627-659 volume:108 year:2021 number:3 day:07 month:08 pages:627-659 |
sourceStr |
Enthalten in Flow, turbulence and combustion 108(2021), 3 vom: 07. Aug., Seite 627-659 volume:108 year:2021 number:3 day:07 month:08 pages:627-659 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Synthetic turbulence Synthetic eddy method Turbulent inflow |
dewey-raw |
500 |
isfreeaccess_bool |
false |
container_title |
Flow, turbulence and combustion |
authorswithroles_txt_mv |
Haywood, John S. @@aut@@ Sescu, Adrian @@aut@@ Bhushan, Shanti @@aut@@ Kees, Christopher E. @@aut@@ |
publishDateDaySort_date |
2021-08-07T00:00:00Z |
hierarchy_top_id |
254303641 |
dewey-sort |
3500 |
id |
OLC2078201243 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2078201243</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230512182035.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10494-021-00289-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2078201243</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10494-021-00289-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.34$jGasdynamik$jAerodynamik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.51$jFeuerungstechnik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Haywood, John S.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-5740-6875</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Triple Hill’s Vortex Synthetic Eddy Method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature B.V. 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The generation of initial or inflow synthetic turbulent velocity or scalar fields reproducing statistical characteristics of realistic turbulence is still a challenge. The synthetic eddy method, previously introduced in the context of inflow conditions for large eddy simulations, is based on the assumption that turbulence can be regarded as a superposition of coherent structures. In this paper, a new type of synthetic eddy method is proposed, where the fundamental eddy is constructed by superposing three Hill’s vortices, with their axes orthogonal to each other. A distribution of Hill’s vortices is used to synthesize an anisotropic turbulent velocity field that satisfies the incompressibility condition and match a given Reynolds stress tensor. The amplitudes of the three vortices that form the fundamental eddy are calculated from known Reynolds stress profiles through a transformation from the physical reference frame to the principal-axis reference frame. In this way, divergence-free anisotropic turbulent velocity fields are obtained that can reproduce a given Reynolds stress tensor. The model was tested on both isotropic and anisotropic turbulent velocity fields, in the framework of grid turbulence decay and turbulent channel flow, respectively. The transition from artificial to realistic turbulence in the proximity to the inflow boundary was found to be small in all test cases that were considered.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Synthetic turbulence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Synthetic eddy method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Turbulent inflow</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sescu, Adrian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bhushan, Shanti</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kees, Christopher E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Flow, turbulence and combustion</subfield><subfield code="d">Springer Netherlands, 1998</subfield><subfield code="g">108(2021), 3 vom: 07. Aug., Seite 627-659</subfield><subfield code="w">(DE-627)254303641</subfield><subfield code="w">(DE-600)1463163-5</subfield><subfield code="w">(DE-576)074754068</subfield><subfield code="x">1386-6184</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:108</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:3</subfield><subfield code="g">day:07</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:627-659</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10494-021-00289-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.34$jGasdynamik$jAerodynamik</subfield><subfield code="q">VZ</subfield><subfield code="0">106419498</subfield><subfield code="0">(DE-625)106419498</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.51$jFeuerungstechnik</subfield><subfield code="q">VZ</subfield><subfield code="0">106419935</subfield><subfield code="0">(DE-625)106419935</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">108</subfield><subfield code="j">2021</subfield><subfield code="e">3</subfield><subfield code="b">07</subfield><subfield code="c">08</subfield><subfield code="h">627-659</subfield></datafield></record></collection>
|
author |
Haywood, John S. |
spellingShingle |
Haywood, John S. ddc 500 bkl 50.34$jGasdynamik$jAerodynamik bkl 52.51$jFeuerungstechnik misc Synthetic turbulence misc Synthetic eddy method misc Turbulent inflow Triple Hill’s Vortex Synthetic Eddy Method |
authorStr |
Haywood, John S. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)254303641 |
format |
Article |
dewey-ones |
500 - Natural sciences & mathematics 600 - Technology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1386-6184 |
topic_title |
500 600 VZ 50.34$jGasdynamik$jAerodynamik bkl 52.51$jFeuerungstechnik bkl Triple Hill’s Vortex Synthetic Eddy Method Synthetic turbulence Synthetic eddy method Turbulent inflow |
topic |
ddc 500 bkl 50.34$jGasdynamik$jAerodynamik bkl 52.51$jFeuerungstechnik misc Synthetic turbulence misc Synthetic eddy method misc Turbulent inflow |
topic_unstemmed |
ddc 500 bkl 50.34$jGasdynamik$jAerodynamik bkl 52.51$jFeuerungstechnik misc Synthetic turbulence misc Synthetic eddy method misc Turbulent inflow |
topic_browse |
ddc 500 bkl 50.34$jGasdynamik$jAerodynamik bkl 52.51$jFeuerungstechnik misc Synthetic turbulence misc Synthetic eddy method misc Turbulent inflow |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Flow, turbulence and combustion |
hierarchy_parent_id |
254303641 |
dewey-tens |
500 - Science 600 - Technology |
hierarchy_top_title |
Flow, turbulence and combustion |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)254303641 (DE-600)1463163-5 (DE-576)074754068 |
title |
Triple Hill’s Vortex Synthetic Eddy Method |
ctrlnum |
(DE-627)OLC2078201243 (DE-He213)s10494-021-00289-4-p |
title_full |
Triple Hill’s Vortex Synthetic Eddy Method |
author_sort |
Haywood, John S. |
journal |
Flow, turbulence and combustion |
journalStr |
Flow, turbulence and combustion |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
627 |
author_browse |
Haywood, John S. Sescu, Adrian Bhushan, Shanti Kees, Christopher E. |
container_volume |
108 |
class |
500 600 VZ 50.34$jGasdynamik$jAerodynamik bkl 52.51$jFeuerungstechnik bkl |
format_se |
Aufsätze |
author-letter |
Haywood, John S. |
doi_str_mv |
10.1007/s10494-021-00289-4 |
normlink |
(ORCID)0000-0002-5740-6875 106419498 106419935 |
normlink_prefix_str_mv |
(orcid)0000-0002-5740-6875 106419498 (DE-625)106419498 106419935 (DE-625)106419935 |
dewey-full |
500 600 |
title_sort |
triple hill’s vortex synthetic eddy method |
title_auth |
Triple Hill’s Vortex Synthetic Eddy Method |
abstract |
Abstract The generation of initial or inflow synthetic turbulent velocity or scalar fields reproducing statistical characteristics of realistic turbulence is still a challenge. The synthetic eddy method, previously introduced in the context of inflow conditions for large eddy simulations, is based on the assumption that turbulence can be regarded as a superposition of coherent structures. In this paper, a new type of synthetic eddy method is proposed, where the fundamental eddy is constructed by superposing three Hill’s vortices, with their axes orthogonal to each other. A distribution of Hill’s vortices is used to synthesize an anisotropic turbulent velocity field that satisfies the incompressibility condition and match a given Reynolds stress tensor. The amplitudes of the three vortices that form the fundamental eddy are calculated from known Reynolds stress profiles through a transformation from the physical reference frame to the principal-axis reference frame. In this way, divergence-free anisotropic turbulent velocity fields are obtained that can reproduce a given Reynolds stress tensor. The model was tested on both isotropic and anisotropic turbulent velocity fields, in the framework of grid turbulence decay and turbulent channel flow, respectively. The transition from artificial to realistic turbulence in the proximity to the inflow boundary was found to be small in all test cases that were considered. © The Author(s), under exclusive licence to Springer Nature B.V. 2021 |
abstractGer |
Abstract The generation of initial or inflow synthetic turbulent velocity or scalar fields reproducing statistical characteristics of realistic turbulence is still a challenge. The synthetic eddy method, previously introduced in the context of inflow conditions for large eddy simulations, is based on the assumption that turbulence can be regarded as a superposition of coherent structures. In this paper, a new type of synthetic eddy method is proposed, where the fundamental eddy is constructed by superposing three Hill’s vortices, with their axes orthogonal to each other. A distribution of Hill’s vortices is used to synthesize an anisotropic turbulent velocity field that satisfies the incompressibility condition and match a given Reynolds stress tensor. The amplitudes of the three vortices that form the fundamental eddy are calculated from known Reynolds stress profiles through a transformation from the physical reference frame to the principal-axis reference frame. In this way, divergence-free anisotropic turbulent velocity fields are obtained that can reproduce a given Reynolds stress tensor. The model was tested on both isotropic and anisotropic turbulent velocity fields, in the framework of grid turbulence decay and turbulent channel flow, respectively. The transition from artificial to realistic turbulence in the proximity to the inflow boundary was found to be small in all test cases that were considered. © The Author(s), under exclusive licence to Springer Nature B.V. 2021 |
abstract_unstemmed |
Abstract The generation of initial or inflow synthetic turbulent velocity or scalar fields reproducing statistical characteristics of realistic turbulence is still a challenge. The synthetic eddy method, previously introduced in the context of inflow conditions for large eddy simulations, is based on the assumption that turbulence can be regarded as a superposition of coherent structures. In this paper, a new type of synthetic eddy method is proposed, where the fundamental eddy is constructed by superposing three Hill’s vortices, with their axes orthogonal to each other. A distribution of Hill’s vortices is used to synthesize an anisotropic turbulent velocity field that satisfies the incompressibility condition and match a given Reynolds stress tensor. The amplitudes of the three vortices that form the fundamental eddy are calculated from known Reynolds stress profiles through a transformation from the physical reference frame to the principal-axis reference frame. In this way, divergence-free anisotropic turbulent velocity fields are obtained that can reproduce a given Reynolds stress tensor. The model was tested on both isotropic and anisotropic turbulent velocity fields, in the framework of grid turbulence decay and turbulent channel flow, respectively. The transition from artificial to realistic turbulence in the proximity to the inflow boundary was found to be small in all test cases that were considered. © The Author(s), under exclusive licence to Springer Nature B.V. 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 GBV_ILN_11 GBV_ILN_2014 GBV_ILN_4700 |
container_issue |
3 |
title_short |
Triple Hill’s Vortex Synthetic Eddy Method |
url |
https://doi.org/10.1007/s10494-021-00289-4 |
remote_bool |
false |
author2 |
Sescu, Adrian Bhushan, Shanti Kees, Christopher E. |
author2Str |
Sescu, Adrian Bhushan, Shanti Kees, Christopher E. |
ppnlink |
254303641 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10494-021-00289-4 |
up_date |
2024-07-03T19:17:27.375Z |
_version_ |
1803586630976536576 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2078201243</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230512182035.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10494-021-00289-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2078201243</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10494-021-00289-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">50.34$jGasdynamik$jAerodynamik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">52.51$jFeuerungstechnik</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Haywood, John S.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-5740-6875</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Triple Hill’s Vortex Synthetic Eddy Method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature B.V. 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The generation of initial or inflow synthetic turbulent velocity or scalar fields reproducing statistical characteristics of realistic turbulence is still a challenge. The synthetic eddy method, previously introduced in the context of inflow conditions for large eddy simulations, is based on the assumption that turbulence can be regarded as a superposition of coherent structures. In this paper, a new type of synthetic eddy method is proposed, where the fundamental eddy is constructed by superposing three Hill’s vortices, with their axes orthogonal to each other. A distribution of Hill’s vortices is used to synthesize an anisotropic turbulent velocity field that satisfies the incompressibility condition and match a given Reynolds stress tensor. The amplitudes of the three vortices that form the fundamental eddy are calculated from known Reynolds stress profiles through a transformation from the physical reference frame to the principal-axis reference frame. In this way, divergence-free anisotropic turbulent velocity fields are obtained that can reproduce a given Reynolds stress tensor. The model was tested on both isotropic and anisotropic turbulent velocity fields, in the framework of grid turbulence decay and turbulent channel flow, respectively. The transition from artificial to realistic turbulence in the proximity to the inflow boundary was found to be small in all test cases that were considered.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Synthetic turbulence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Synthetic eddy method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Turbulent inflow</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sescu, Adrian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bhushan, Shanti</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kees, Christopher E.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Flow, turbulence and combustion</subfield><subfield code="d">Springer Netherlands, 1998</subfield><subfield code="g">108(2021), 3 vom: 07. Aug., Seite 627-659</subfield><subfield code="w">(DE-627)254303641</subfield><subfield code="w">(DE-600)1463163-5</subfield><subfield code="w">(DE-576)074754068</subfield><subfield code="x">1386-6184</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:108</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:3</subfield><subfield code="g">day:07</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:627-659</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10494-021-00289-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2014</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">50.34$jGasdynamik$jAerodynamik</subfield><subfield code="q">VZ</subfield><subfield code="0">106419498</subfield><subfield code="0">(DE-625)106419498</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">52.51$jFeuerungstechnik</subfield><subfield code="q">VZ</subfield><subfield code="0">106419935</subfield><subfield code="0">(DE-625)106419935</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">108</subfield><subfield code="j">2021</subfield><subfield code="e">3</subfield><subfield code="b">07</subfield><subfield code="c">08</subfield><subfield code="h">627-659</subfield></datafield></record></collection>
|
score |
7.4013834 |