Reversible magnetic phase transitions of zirconium oxide nanoparticles induced by dynamic shock waves
Abstract Shock wave impacts on bulk and nanocrystalline materials provide an ideal platform for understanding the stability of the crystallographic, electronic and magnetic phase of test specimens in harsh environments. In the current research work, we display the investigations on the stability of...
Ausführliche Beschreibung
Autor*in: |
Sivakumar, A. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Applied physics. A, Materials science & processing - Springer Berlin Heidelberg, 1981, 128(2022), 4 vom: 13. März |
---|---|
Übergeordnetes Werk: |
volume:128 ; year:2022 ; number:4 ; day:13 ; month:03 |
Links: |
---|
DOI / URN: |
10.1007/s00339-022-05426-y |
---|
Katalog-ID: |
OLC207824015X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC207824015X | ||
003 | DE-627 | ||
005 | 20230506025222.0 | ||
007 | tu | ||
008 | 221220s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00339-022-05426-y |2 doi | |
035 | |a (DE-627)OLC207824015X | ||
035 | |a (DE-He213)s00339-022-05426-y-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |a 620 |q VZ |
082 | 0 | 4 | |a 530 |q VZ |
084 | |a UA 9001.A |q VZ |2 rvk | ||
100 | 1 | |a Sivakumar, A. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Reversible magnetic phase transitions of zirconium oxide nanoparticles induced by dynamic shock waves |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022 | ||
520 | |a Abstract Shock wave impacts on bulk and nanocrystalline materials provide an ideal platform for understanding the stability of the crystallographic, electronic and magnetic phase of test specimens in harsh environments. In the current research work, we display the investigations on the stability of crystallographic and magnetic phases of technologically important zirconium oxide nanoparticles ($ ZrO_{2} $ NPs) at dynamic shocked conditions making use of X-ray diffraction (XRD), diffuse reflectance spectroscopy and vibrational sample magnetometer (VSM). Based on the observed X-ray diffraction results, the crystallographic structure (monoclinic–P$ 2_{1} $/c) of the title material is intact at shocked conditions, whereas VSM results show reversible magnetic states which follow the sequence of magnetic phase transitions Ferro–Ferri–Ferro–Ferri for the respective counts of 0, 50, 100 and 150 shocked conditions. Based on the convincing reversible magnetic phase transition behaviour, $ ZrO_{2} $ NPs can be a potential material for the applications in magnetic sensors and spintronics. | ||
650 | 4 | |a Shock waves | |
650 | 4 | |a ZrO | |
650 | 4 | |a NPs | |
650 | 4 | |a Reversible magnetic phase transitions | |
650 | 4 | |a Magnetic sensors | |
700 | 1 | |a Dhas, S. Sahaya Jude |4 aut | |
700 | 1 | |a Kumar, Raju Suresh |4 aut | |
700 | 1 | |a Almansour, Abdulrahman I. |4 aut | |
700 | 1 | |a Arumugam, Natarajan |4 aut | |
700 | 1 | |a Murugesan, Magesh |4 aut | |
700 | 1 | |a Dhas, S. A. Martin Britto |0 (orcid)0000-0003-0896-7534 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied physics. A, Materials science & processing |d Springer Berlin Heidelberg, 1981 |g 128(2022), 4 vom: 13. März |w (DE-627)129861340 |w (DE-600)283365-7 |w (DE-576)015171930 |x 0947-8396 |7 nnns |
773 | 1 | 8 | |g volume:128 |g year:2022 |g number:4 |g day:13 |g month:03 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00339-022-05426-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
936 | r | v | |a UA 9001.A |
951 | |a AR | ||
952 | |d 128 |j 2022 |e 4 |b 13 |c 03 |
author_variant |
a s as s s j d ssj ssjd r s k rs rsk a i a ai aia n a na m m mm s a m b d samb sambd |
---|---|
matchkey_str |
article:09478396:2022----::eesbeantchstastosficnuoieaoatceid |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s00339-022-05426-y doi (DE-627)OLC207824015X (DE-He213)s00339-022-05426-y-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001.A VZ rvk Sivakumar, A. verfasserin aut Reversible magnetic phase transitions of zirconium oxide nanoparticles induced by dynamic shock waves 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022 Abstract Shock wave impacts on bulk and nanocrystalline materials provide an ideal platform for understanding the stability of the crystallographic, electronic and magnetic phase of test specimens in harsh environments. In the current research work, we display the investigations on the stability of crystallographic and magnetic phases of technologically important zirconium oxide nanoparticles ($ ZrO_{2} $ NPs) at dynamic shocked conditions making use of X-ray diffraction (XRD), diffuse reflectance spectroscopy and vibrational sample magnetometer (VSM). Based on the observed X-ray diffraction results, the crystallographic structure (monoclinic–P$ 2_{1} $/c) of the title material is intact at shocked conditions, whereas VSM results show reversible magnetic states which follow the sequence of magnetic phase transitions Ferro–Ferri–Ferro–Ferri for the respective counts of 0, 50, 100 and 150 shocked conditions. Based on the convincing reversible magnetic phase transition behaviour, $ ZrO_{2} $ NPs can be a potential material for the applications in magnetic sensors and spintronics. Shock waves ZrO NPs Reversible magnetic phase transitions Magnetic sensors Dhas, S. Sahaya Jude aut Kumar, Raju Suresh aut Almansour, Abdulrahman I. aut Arumugam, Natarajan aut Murugesan, Magesh aut Dhas, S. A. Martin Britto (orcid)0000-0003-0896-7534 aut Enthalten in Applied physics. A, Materials science & processing Springer Berlin Heidelberg, 1981 128(2022), 4 vom: 13. März (DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 0947-8396 nnns volume:128 year:2022 number:4 day:13 month:03 https://doi.org/10.1007/s00339-022-05426-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_2018 GBV_ILN_4277 UA 9001.A AR 128 2022 4 13 03 |
spelling |
10.1007/s00339-022-05426-y doi (DE-627)OLC207824015X (DE-He213)s00339-022-05426-y-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001.A VZ rvk Sivakumar, A. verfasserin aut Reversible magnetic phase transitions of zirconium oxide nanoparticles induced by dynamic shock waves 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022 Abstract Shock wave impacts on bulk and nanocrystalline materials provide an ideal platform for understanding the stability of the crystallographic, electronic and magnetic phase of test specimens in harsh environments. In the current research work, we display the investigations on the stability of crystallographic and magnetic phases of technologically important zirconium oxide nanoparticles ($ ZrO_{2} $ NPs) at dynamic shocked conditions making use of X-ray diffraction (XRD), diffuse reflectance spectroscopy and vibrational sample magnetometer (VSM). Based on the observed X-ray diffraction results, the crystallographic structure (monoclinic–P$ 2_{1} $/c) of the title material is intact at shocked conditions, whereas VSM results show reversible magnetic states which follow the sequence of magnetic phase transitions Ferro–Ferri–Ferro–Ferri for the respective counts of 0, 50, 100 and 150 shocked conditions. Based on the convincing reversible magnetic phase transition behaviour, $ ZrO_{2} $ NPs can be a potential material for the applications in magnetic sensors and spintronics. Shock waves ZrO NPs Reversible magnetic phase transitions Magnetic sensors Dhas, S. Sahaya Jude aut Kumar, Raju Suresh aut Almansour, Abdulrahman I. aut Arumugam, Natarajan aut Murugesan, Magesh aut Dhas, S. A. Martin Britto (orcid)0000-0003-0896-7534 aut Enthalten in Applied physics. A, Materials science & processing Springer Berlin Heidelberg, 1981 128(2022), 4 vom: 13. März (DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 0947-8396 nnns volume:128 year:2022 number:4 day:13 month:03 https://doi.org/10.1007/s00339-022-05426-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_2018 GBV_ILN_4277 UA 9001.A AR 128 2022 4 13 03 |
allfields_unstemmed |
10.1007/s00339-022-05426-y doi (DE-627)OLC207824015X (DE-He213)s00339-022-05426-y-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001.A VZ rvk Sivakumar, A. verfasserin aut Reversible magnetic phase transitions of zirconium oxide nanoparticles induced by dynamic shock waves 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022 Abstract Shock wave impacts on bulk and nanocrystalline materials provide an ideal platform for understanding the stability of the crystallographic, electronic and magnetic phase of test specimens in harsh environments. In the current research work, we display the investigations on the stability of crystallographic and magnetic phases of technologically important zirconium oxide nanoparticles ($ ZrO_{2} $ NPs) at dynamic shocked conditions making use of X-ray diffraction (XRD), diffuse reflectance spectroscopy and vibrational sample magnetometer (VSM). Based on the observed X-ray diffraction results, the crystallographic structure (monoclinic–P$ 2_{1} $/c) of the title material is intact at shocked conditions, whereas VSM results show reversible magnetic states which follow the sequence of magnetic phase transitions Ferro–Ferri–Ferro–Ferri for the respective counts of 0, 50, 100 and 150 shocked conditions. Based on the convincing reversible magnetic phase transition behaviour, $ ZrO_{2} $ NPs can be a potential material for the applications in magnetic sensors and spintronics. Shock waves ZrO NPs Reversible magnetic phase transitions Magnetic sensors Dhas, S. Sahaya Jude aut Kumar, Raju Suresh aut Almansour, Abdulrahman I. aut Arumugam, Natarajan aut Murugesan, Magesh aut Dhas, S. A. Martin Britto (orcid)0000-0003-0896-7534 aut Enthalten in Applied physics. A, Materials science & processing Springer Berlin Heidelberg, 1981 128(2022), 4 vom: 13. März (DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 0947-8396 nnns volume:128 year:2022 number:4 day:13 month:03 https://doi.org/10.1007/s00339-022-05426-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_2018 GBV_ILN_4277 UA 9001.A AR 128 2022 4 13 03 |
allfieldsGer |
10.1007/s00339-022-05426-y doi (DE-627)OLC207824015X (DE-He213)s00339-022-05426-y-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001.A VZ rvk Sivakumar, A. verfasserin aut Reversible magnetic phase transitions of zirconium oxide nanoparticles induced by dynamic shock waves 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022 Abstract Shock wave impacts on bulk and nanocrystalline materials provide an ideal platform for understanding the stability of the crystallographic, electronic and magnetic phase of test specimens in harsh environments. In the current research work, we display the investigations on the stability of crystallographic and magnetic phases of technologically important zirconium oxide nanoparticles ($ ZrO_{2} $ NPs) at dynamic shocked conditions making use of X-ray diffraction (XRD), diffuse reflectance spectroscopy and vibrational sample magnetometer (VSM). Based on the observed X-ray diffraction results, the crystallographic structure (monoclinic–P$ 2_{1} $/c) of the title material is intact at shocked conditions, whereas VSM results show reversible magnetic states which follow the sequence of magnetic phase transitions Ferro–Ferri–Ferro–Ferri for the respective counts of 0, 50, 100 and 150 shocked conditions. Based on the convincing reversible magnetic phase transition behaviour, $ ZrO_{2} $ NPs can be a potential material for the applications in magnetic sensors and spintronics. Shock waves ZrO NPs Reversible magnetic phase transitions Magnetic sensors Dhas, S. Sahaya Jude aut Kumar, Raju Suresh aut Almansour, Abdulrahman I. aut Arumugam, Natarajan aut Murugesan, Magesh aut Dhas, S. A. Martin Britto (orcid)0000-0003-0896-7534 aut Enthalten in Applied physics. A, Materials science & processing Springer Berlin Heidelberg, 1981 128(2022), 4 vom: 13. März (DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 0947-8396 nnns volume:128 year:2022 number:4 day:13 month:03 https://doi.org/10.1007/s00339-022-05426-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_2018 GBV_ILN_4277 UA 9001.A AR 128 2022 4 13 03 |
allfieldsSound |
10.1007/s00339-022-05426-y doi (DE-627)OLC207824015X (DE-He213)s00339-022-05426-y-p DE-627 ger DE-627 rakwb eng 530 620 VZ 530 VZ UA 9001.A VZ rvk Sivakumar, A. verfasserin aut Reversible magnetic phase transitions of zirconium oxide nanoparticles induced by dynamic shock waves 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022 Abstract Shock wave impacts on bulk and nanocrystalline materials provide an ideal platform for understanding the stability of the crystallographic, electronic and magnetic phase of test specimens in harsh environments. In the current research work, we display the investigations on the stability of crystallographic and magnetic phases of technologically important zirconium oxide nanoparticles ($ ZrO_{2} $ NPs) at dynamic shocked conditions making use of X-ray diffraction (XRD), diffuse reflectance spectroscopy and vibrational sample magnetometer (VSM). Based on the observed X-ray diffraction results, the crystallographic structure (monoclinic–P$ 2_{1} $/c) of the title material is intact at shocked conditions, whereas VSM results show reversible magnetic states which follow the sequence of magnetic phase transitions Ferro–Ferri–Ferro–Ferri for the respective counts of 0, 50, 100 and 150 shocked conditions. Based on the convincing reversible magnetic phase transition behaviour, $ ZrO_{2} $ NPs can be a potential material for the applications in magnetic sensors and spintronics. Shock waves ZrO NPs Reversible magnetic phase transitions Magnetic sensors Dhas, S. Sahaya Jude aut Kumar, Raju Suresh aut Almansour, Abdulrahman I. aut Arumugam, Natarajan aut Murugesan, Magesh aut Dhas, S. A. Martin Britto (orcid)0000-0003-0896-7534 aut Enthalten in Applied physics. A, Materials science & processing Springer Berlin Heidelberg, 1981 128(2022), 4 vom: 13. März (DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 0947-8396 nnns volume:128 year:2022 number:4 day:13 month:03 https://doi.org/10.1007/s00339-022-05426-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_2018 GBV_ILN_4277 UA 9001.A AR 128 2022 4 13 03 |
language |
English |
source |
Enthalten in Applied physics. A, Materials science & processing 128(2022), 4 vom: 13. März volume:128 year:2022 number:4 day:13 month:03 |
sourceStr |
Enthalten in Applied physics. A, Materials science & processing 128(2022), 4 vom: 13. März volume:128 year:2022 number:4 day:13 month:03 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Shock waves ZrO NPs Reversible magnetic phase transitions Magnetic sensors |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
Applied physics. A, Materials science & processing |
authorswithroles_txt_mv |
Sivakumar, A. @@aut@@ Dhas, S. Sahaya Jude @@aut@@ Kumar, Raju Suresh @@aut@@ Almansour, Abdulrahman I. @@aut@@ Arumugam, Natarajan @@aut@@ Murugesan, Magesh @@aut@@ Dhas, S. A. Martin Britto @@aut@@ |
publishDateDaySort_date |
2022-03-13T00:00:00Z |
hierarchy_top_id |
129861340 |
dewey-sort |
3530 |
id |
OLC207824015X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC207824015X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506025222.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00339-022-05426-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC207824015X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00339-022-05426-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 9001.A</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sivakumar, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reversible magnetic phase transitions of zirconium oxide nanoparticles induced by dynamic shock waves</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Shock wave impacts on bulk and nanocrystalline materials provide an ideal platform for understanding the stability of the crystallographic, electronic and magnetic phase of test specimens in harsh environments. In the current research work, we display the investigations on the stability of crystallographic and magnetic phases of technologically important zirconium oxide nanoparticles ($ ZrO_{2} $ NPs) at dynamic shocked conditions making use of X-ray diffraction (XRD), diffuse reflectance spectroscopy and vibrational sample magnetometer (VSM). Based on the observed X-ray diffraction results, the crystallographic structure (monoclinic–P$ 2_{1} $/c) of the title material is intact at shocked conditions, whereas VSM results show reversible magnetic states which follow the sequence of magnetic phase transitions Ferro–Ferri–Ferro–Ferri for the respective counts of 0, 50, 100 and 150 shocked conditions. Based on the convincing reversible magnetic phase transition behaviour, $ ZrO_{2} $ NPs can be a potential material for the applications in magnetic sensors and spintronics.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shock waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ZrO</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NPs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reversible magnetic phase transitions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic sensors</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dhas, S. Sahaya Jude</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kumar, Raju Suresh</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Almansour, Abdulrahman I.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Arumugam, Natarajan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Murugesan, Magesh</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dhas, S. A. Martin Britto</subfield><subfield code="0">(orcid)0000-0003-0896-7534</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied physics. A, Materials science & processing</subfield><subfield code="d">Springer Berlin Heidelberg, 1981</subfield><subfield code="g">128(2022), 4 vom: 13. März</subfield><subfield code="w">(DE-627)129861340</subfield><subfield code="w">(DE-600)283365-7</subfield><subfield code="w">(DE-576)015171930</subfield><subfield code="x">0947-8396</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:128</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4</subfield><subfield code="g">day:13</subfield><subfield code="g">month:03</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00339-022-05426-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 9001.A</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">128</subfield><subfield code="j">2022</subfield><subfield code="e">4</subfield><subfield code="b">13</subfield><subfield code="c">03</subfield></datafield></record></collection>
|
author |
Sivakumar, A. |
spellingShingle |
Sivakumar, A. ddc 530 rvk UA 9001.A misc Shock waves misc ZrO misc NPs misc Reversible magnetic phase transitions misc Magnetic sensors Reversible magnetic phase transitions of zirconium oxide nanoparticles induced by dynamic shock waves |
authorStr |
Sivakumar, A. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129861340 |
format |
Article |
dewey-ones |
530 - Physics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0947-8396 |
topic_title |
530 620 VZ 530 VZ UA 9001.A VZ rvk Reversible magnetic phase transitions of zirconium oxide nanoparticles induced by dynamic shock waves Shock waves ZrO NPs Reversible magnetic phase transitions Magnetic sensors |
topic |
ddc 530 rvk UA 9001.A misc Shock waves misc ZrO misc NPs misc Reversible magnetic phase transitions misc Magnetic sensors |
topic_unstemmed |
ddc 530 rvk UA 9001.A misc Shock waves misc ZrO misc NPs misc Reversible magnetic phase transitions misc Magnetic sensors |
topic_browse |
ddc 530 rvk UA 9001.A misc Shock waves misc ZrO misc NPs misc Reversible magnetic phase transitions misc Magnetic sensors |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Applied physics. A, Materials science & processing |
hierarchy_parent_id |
129861340 |
dewey-tens |
530 - Physics 620 - Engineering |
hierarchy_top_title |
Applied physics. A, Materials science & processing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129861340 (DE-600)283365-7 (DE-576)015171930 |
title |
Reversible magnetic phase transitions of zirconium oxide nanoparticles induced by dynamic shock waves |
ctrlnum |
(DE-627)OLC207824015X (DE-He213)s00339-022-05426-y-p |
title_full |
Reversible magnetic phase transitions of zirconium oxide nanoparticles induced by dynamic shock waves |
author_sort |
Sivakumar, A. |
journal |
Applied physics. A, Materials science & processing |
journalStr |
Applied physics. A, Materials science & processing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Sivakumar, A. Dhas, S. Sahaya Jude Kumar, Raju Suresh Almansour, Abdulrahman I. Arumugam, Natarajan Murugesan, Magesh Dhas, S. A. Martin Britto |
container_volume |
128 |
class |
530 620 VZ 530 VZ UA 9001.A VZ rvk |
format_se |
Aufsätze |
author-letter |
Sivakumar, A. |
doi_str_mv |
10.1007/s00339-022-05426-y |
normlink |
(ORCID)0000-0003-0896-7534 |
normlink_prefix_str_mv |
(orcid)0000-0003-0896-7534 |
dewey-full |
530 620 |
title_sort |
reversible magnetic phase transitions of zirconium oxide nanoparticles induced by dynamic shock waves |
title_auth |
Reversible magnetic phase transitions of zirconium oxide nanoparticles induced by dynamic shock waves |
abstract |
Abstract Shock wave impacts on bulk and nanocrystalline materials provide an ideal platform for understanding the stability of the crystallographic, electronic and magnetic phase of test specimens in harsh environments. In the current research work, we display the investigations on the stability of crystallographic and magnetic phases of technologically important zirconium oxide nanoparticles ($ ZrO_{2} $ NPs) at dynamic shocked conditions making use of X-ray diffraction (XRD), diffuse reflectance spectroscopy and vibrational sample magnetometer (VSM). Based on the observed X-ray diffraction results, the crystallographic structure (monoclinic–P$ 2_{1} $/c) of the title material is intact at shocked conditions, whereas VSM results show reversible magnetic states which follow the sequence of magnetic phase transitions Ferro–Ferri–Ferro–Ferri for the respective counts of 0, 50, 100 and 150 shocked conditions. Based on the convincing reversible magnetic phase transition behaviour, $ ZrO_{2} $ NPs can be a potential material for the applications in magnetic sensors and spintronics. © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022 |
abstractGer |
Abstract Shock wave impacts on bulk and nanocrystalline materials provide an ideal platform for understanding the stability of the crystallographic, electronic and magnetic phase of test specimens in harsh environments. In the current research work, we display the investigations on the stability of crystallographic and magnetic phases of technologically important zirconium oxide nanoparticles ($ ZrO_{2} $ NPs) at dynamic shocked conditions making use of X-ray diffraction (XRD), diffuse reflectance spectroscopy and vibrational sample magnetometer (VSM). Based on the observed X-ray diffraction results, the crystallographic structure (monoclinic–P$ 2_{1} $/c) of the title material is intact at shocked conditions, whereas VSM results show reversible magnetic states which follow the sequence of magnetic phase transitions Ferro–Ferri–Ferro–Ferri for the respective counts of 0, 50, 100 and 150 shocked conditions. Based on the convincing reversible magnetic phase transition behaviour, $ ZrO_{2} $ NPs can be a potential material for the applications in magnetic sensors and spintronics. © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022 |
abstract_unstemmed |
Abstract Shock wave impacts on bulk and nanocrystalline materials provide an ideal platform for understanding the stability of the crystallographic, electronic and magnetic phase of test specimens in harsh environments. In the current research work, we display the investigations on the stability of crystallographic and magnetic phases of technologically important zirconium oxide nanoparticles ($ ZrO_{2} $ NPs) at dynamic shocked conditions making use of X-ray diffraction (XRD), diffuse reflectance spectroscopy and vibrational sample magnetometer (VSM). Based on the observed X-ray diffraction results, the crystallographic structure (monoclinic–P$ 2_{1} $/c) of the title material is intact at shocked conditions, whereas VSM results show reversible magnetic states which follow the sequence of magnetic phase transitions Ferro–Ferri–Ferro–Ferri for the respective counts of 0, 50, 100 and 150 shocked conditions. Based on the convincing reversible magnetic phase transition behaviour, $ ZrO_{2} $ NPs can be a potential material for the applications in magnetic sensors and spintronics. © The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
4 |
title_short |
Reversible magnetic phase transitions of zirconium oxide nanoparticles induced by dynamic shock waves |
url |
https://doi.org/10.1007/s00339-022-05426-y |
remote_bool |
false |
author2 |
Dhas, S. Sahaya Jude Kumar, Raju Suresh Almansour, Abdulrahman I. Arumugam, Natarajan Murugesan, Magesh Dhas, S. A. Martin Britto |
author2Str |
Dhas, S. Sahaya Jude Kumar, Raju Suresh Almansour, Abdulrahman I. Arumugam, Natarajan Murugesan, Magesh Dhas, S. A. Martin Britto |
ppnlink |
129861340 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00339-022-05426-y |
up_date |
2024-07-03T19:29:01.902Z |
_version_ |
1803587359241928704 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC207824015X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506025222.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00339-022-05426-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC207824015X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00339-022-05426-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">UA 9001.A</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Sivakumar, A.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Reversible magnetic phase transitions of zirconium oxide nanoparticles induced by dynamic shock waves</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH, DE part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Shock wave impacts on bulk and nanocrystalline materials provide an ideal platform for understanding the stability of the crystallographic, electronic and magnetic phase of test specimens in harsh environments. In the current research work, we display the investigations on the stability of crystallographic and magnetic phases of technologically important zirconium oxide nanoparticles ($ ZrO_{2} $ NPs) at dynamic shocked conditions making use of X-ray diffraction (XRD), diffuse reflectance spectroscopy and vibrational sample magnetometer (VSM). Based on the observed X-ray diffraction results, the crystallographic structure (monoclinic–P$ 2_{1} $/c) of the title material is intact at shocked conditions, whereas VSM results show reversible magnetic states which follow the sequence of magnetic phase transitions Ferro–Ferri–Ferro–Ferri for the respective counts of 0, 50, 100 and 150 shocked conditions. Based on the convincing reversible magnetic phase transition behaviour, $ ZrO_{2} $ NPs can be a potential material for the applications in magnetic sensors and spintronics.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Shock waves</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">ZrO</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">NPs</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Reversible magnetic phase transitions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Magnetic sensors</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dhas, S. Sahaya Jude</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Kumar, Raju Suresh</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Almansour, Abdulrahman I.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Arumugam, Natarajan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Murugesan, Magesh</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dhas, S. A. Martin Britto</subfield><subfield code="0">(orcid)0000-0003-0896-7534</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied physics. A, Materials science & processing</subfield><subfield code="d">Springer Berlin Heidelberg, 1981</subfield><subfield code="g">128(2022), 4 vom: 13. März</subfield><subfield code="w">(DE-627)129861340</subfield><subfield code="w">(DE-600)283365-7</subfield><subfield code="w">(DE-576)015171930</subfield><subfield code="x">0947-8396</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:128</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4</subfield><subfield code="g">day:13</subfield><subfield code="g">month:03</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00339-022-05426-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">UA 9001.A</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">128</subfield><subfield code="j">2022</subfield><subfield code="e">4</subfield><subfield code="b">13</subfield><subfield code="c">03</subfield></datafield></record></collection>
|
score |
7.4008617 |