Quantum Support Vector Machine Based on Gradient Descent
Abstract Support vector machine is a supervised machine learning algorithm, which is usually solved by iterative method. Quantum algorithms have significant advantages over classical algorithms in terms of speed and capacity. In this work, a quantum support vector machine algorithm based on gradient...
Ausführliche Beschreibung
Autor*in: |
Li, Hong [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: International journal of theoretical physics - Springer US, 1968, 61(2022), 3 vom: März |
---|---|
Übergeordnetes Werk: |
volume:61 ; year:2022 ; number:3 ; month:03 |
Links: |
---|
DOI / URN: |
10.1007/s10773-022-05040-x |
---|
Katalog-ID: |
OLC207836181X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC207836181X | ||
003 | DE-627 | ||
005 | 20230506005325.0 | ||
007 | tu | ||
008 | 221220s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10773-022-05040-x |2 doi | |
035 | |a (DE-627)OLC207836181X | ||
035 | |a (DE-He213)s10773-022-05040-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 530 |q VZ |
084 | |a 33.00 |2 bkl | ||
100 | 1 | |a Li, Hong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Quantum Support Vector Machine Based on Gradient Descent |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 | ||
520 | |a Abstract Support vector machine is a supervised machine learning algorithm, which is usually solved by iterative method. Quantum algorithms have significant advantages over classical algorithms in terms of speed and capacity. In this work, a quantum support vector machine algorithm based on gradient descent is proposed. Firstly, in the training stage, quantum gradient descent was used to obtain the training parameters, which reduces the time complexity of a single iteration from the classical polynomial level to the logarithmic level. Then, in the classification stage, we built a quantum classifier that can classify multiple samples at the same time, thereby improving the efficiency of classification. Finally, the simulation experiments proved the classification ability of our quantum support vector machine. | ||
650 | 4 | |a Quantum support vector machine | |
650 | 4 | |a Quantum gradient descent | |
650 | 4 | |a Quantum machine learning | |
650 | 4 | |a Quantum computing | |
700 | 1 | |a Jiang, Nan |0 (orcid)0000-0001-9269-8079 |4 aut | |
700 | 1 | |a Zhang, Rui |4 aut | |
700 | 1 | |a Wang, Zichen |4 aut | |
700 | 1 | |a Wang, Hailiang |4 aut | |
773 | 0 | 8 | |i Enthalten in |t International journal of theoretical physics |d Springer US, 1968 |g 61(2022), 3 vom: März |w (DE-627)129546097 |w (DE-600)218277-4 |w (DE-576)014996413 |x 0020-7748 |7 nnns |
773 | 1 | 8 | |g volume:61 |g year:2022 |g number:3 |g month:03 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10773-022-05040-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
936 | b | k | |a 33.00 |q VZ |
951 | |a AR | ||
952 | |d 61 |j 2022 |e 3 |c 03 |
author_variant |
h l hl n j nj r z rz z w zw h w hw |
---|---|
matchkey_str |
article:00207748:2022----::unuspotetrahnbsdnr |
hierarchy_sort_str |
2022 |
bklnumber |
33.00 |
publishDate |
2022 |
allfields |
10.1007/s10773-022-05040-x doi (DE-627)OLC207836181X (DE-He213)s10773-022-05040-x-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Li, Hong verfasserin aut Quantum Support Vector Machine Based on Gradient Descent 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract Support vector machine is a supervised machine learning algorithm, which is usually solved by iterative method. Quantum algorithms have significant advantages over classical algorithms in terms of speed and capacity. In this work, a quantum support vector machine algorithm based on gradient descent is proposed. Firstly, in the training stage, quantum gradient descent was used to obtain the training parameters, which reduces the time complexity of a single iteration from the classical polynomial level to the logarithmic level. Then, in the classification stage, we built a quantum classifier that can classify multiple samples at the same time, thereby improving the efficiency of classification. Finally, the simulation experiments proved the classification ability of our quantum support vector machine. Quantum support vector machine Quantum gradient descent Quantum machine learning Quantum computing Jiang, Nan (orcid)0000-0001-9269-8079 aut Zhang, Rui aut Wang, Zichen aut Wang, Hailiang aut Enthalten in International journal of theoretical physics Springer US, 1968 61(2022), 3 vom: März (DE-627)129546097 (DE-600)218277-4 (DE-576)014996413 0020-7748 nnns volume:61 year:2022 number:3 month:03 https://doi.org/10.1007/s10773-022-05040-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY 33.00 VZ AR 61 2022 3 03 |
spelling |
10.1007/s10773-022-05040-x doi (DE-627)OLC207836181X (DE-He213)s10773-022-05040-x-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Li, Hong verfasserin aut Quantum Support Vector Machine Based on Gradient Descent 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract Support vector machine is a supervised machine learning algorithm, which is usually solved by iterative method. Quantum algorithms have significant advantages over classical algorithms in terms of speed and capacity. In this work, a quantum support vector machine algorithm based on gradient descent is proposed. Firstly, in the training stage, quantum gradient descent was used to obtain the training parameters, which reduces the time complexity of a single iteration from the classical polynomial level to the logarithmic level. Then, in the classification stage, we built a quantum classifier that can classify multiple samples at the same time, thereby improving the efficiency of classification. Finally, the simulation experiments proved the classification ability of our quantum support vector machine. Quantum support vector machine Quantum gradient descent Quantum machine learning Quantum computing Jiang, Nan (orcid)0000-0001-9269-8079 aut Zhang, Rui aut Wang, Zichen aut Wang, Hailiang aut Enthalten in International journal of theoretical physics Springer US, 1968 61(2022), 3 vom: März (DE-627)129546097 (DE-600)218277-4 (DE-576)014996413 0020-7748 nnns volume:61 year:2022 number:3 month:03 https://doi.org/10.1007/s10773-022-05040-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY 33.00 VZ AR 61 2022 3 03 |
allfields_unstemmed |
10.1007/s10773-022-05040-x doi (DE-627)OLC207836181X (DE-He213)s10773-022-05040-x-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Li, Hong verfasserin aut Quantum Support Vector Machine Based on Gradient Descent 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract Support vector machine is a supervised machine learning algorithm, which is usually solved by iterative method. Quantum algorithms have significant advantages over classical algorithms in terms of speed and capacity. In this work, a quantum support vector machine algorithm based on gradient descent is proposed. Firstly, in the training stage, quantum gradient descent was used to obtain the training parameters, which reduces the time complexity of a single iteration from the classical polynomial level to the logarithmic level. Then, in the classification stage, we built a quantum classifier that can classify multiple samples at the same time, thereby improving the efficiency of classification. Finally, the simulation experiments proved the classification ability of our quantum support vector machine. Quantum support vector machine Quantum gradient descent Quantum machine learning Quantum computing Jiang, Nan (orcid)0000-0001-9269-8079 aut Zhang, Rui aut Wang, Zichen aut Wang, Hailiang aut Enthalten in International journal of theoretical physics Springer US, 1968 61(2022), 3 vom: März (DE-627)129546097 (DE-600)218277-4 (DE-576)014996413 0020-7748 nnns volume:61 year:2022 number:3 month:03 https://doi.org/10.1007/s10773-022-05040-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY 33.00 VZ AR 61 2022 3 03 |
allfieldsGer |
10.1007/s10773-022-05040-x doi (DE-627)OLC207836181X (DE-He213)s10773-022-05040-x-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Li, Hong verfasserin aut Quantum Support Vector Machine Based on Gradient Descent 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract Support vector machine is a supervised machine learning algorithm, which is usually solved by iterative method. Quantum algorithms have significant advantages over classical algorithms in terms of speed and capacity. In this work, a quantum support vector machine algorithm based on gradient descent is proposed. Firstly, in the training stage, quantum gradient descent was used to obtain the training parameters, which reduces the time complexity of a single iteration from the classical polynomial level to the logarithmic level. Then, in the classification stage, we built a quantum classifier that can classify multiple samples at the same time, thereby improving the efficiency of classification. Finally, the simulation experiments proved the classification ability of our quantum support vector machine. Quantum support vector machine Quantum gradient descent Quantum machine learning Quantum computing Jiang, Nan (orcid)0000-0001-9269-8079 aut Zhang, Rui aut Wang, Zichen aut Wang, Hailiang aut Enthalten in International journal of theoretical physics Springer US, 1968 61(2022), 3 vom: März (DE-627)129546097 (DE-600)218277-4 (DE-576)014996413 0020-7748 nnns volume:61 year:2022 number:3 month:03 https://doi.org/10.1007/s10773-022-05040-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY 33.00 VZ AR 61 2022 3 03 |
allfieldsSound |
10.1007/s10773-022-05040-x doi (DE-627)OLC207836181X (DE-He213)s10773-022-05040-x-p DE-627 ger DE-627 rakwb eng 530 VZ 33.00 bkl Li, Hong verfasserin aut Quantum Support Vector Machine Based on Gradient Descent 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract Support vector machine is a supervised machine learning algorithm, which is usually solved by iterative method. Quantum algorithms have significant advantages over classical algorithms in terms of speed and capacity. In this work, a quantum support vector machine algorithm based on gradient descent is proposed. Firstly, in the training stage, quantum gradient descent was used to obtain the training parameters, which reduces the time complexity of a single iteration from the classical polynomial level to the logarithmic level. Then, in the classification stage, we built a quantum classifier that can classify multiple samples at the same time, thereby improving the efficiency of classification. Finally, the simulation experiments proved the classification ability of our quantum support vector machine. Quantum support vector machine Quantum gradient descent Quantum machine learning Quantum computing Jiang, Nan (orcid)0000-0001-9269-8079 aut Zhang, Rui aut Wang, Zichen aut Wang, Hailiang aut Enthalten in International journal of theoretical physics Springer US, 1968 61(2022), 3 vom: März (DE-627)129546097 (DE-600)218277-4 (DE-576)014996413 0020-7748 nnns volume:61 year:2022 number:3 month:03 https://doi.org/10.1007/s10773-022-05040-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY 33.00 VZ AR 61 2022 3 03 |
language |
English |
source |
Enthalten in International journal of theoretical physics 61(2022), 3 vom: März volume:61 year:2022 number:3 month:03 |
sourceStr |
Enthalten in International journal of theoretical physics 61(2022), 3 vom: März volume:61 year:2022 number:3 month:03 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Quantum support vector machine Quantum gradient descent Quantum machine learning Quantum computing |
dewey-raw |
530 |
isfreeaccess_bool |
false |
container_title |
International journal of theoretical physics |
authorswithroles_txt_mv |
Li, Hong @@aut@@ Jiang, Nan @@aut@@ Zhang, Rui @@aut@@ Wang, Zichen @@aut@@ Wang, Hailiang @@aut@@ |
publishDateDaySort_date |
2022-03-01T00:00:00Z |
hierarchy_top_id |
129546097 |
dewey-sort |
3530 |
id |
OLC207836181X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC207836181X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506005325.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10773-022-05040-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC207836181X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10773-022-05040-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Hong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum Support Vector Machine Based on Gradient Descent</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Support vector machine is a supervised machine learning algorithm, which is usually solved by iterative method. Quantum algorithms have significant advantages over classical algorithms in terms of speed and capacity. In this work, a quantum support vector machine algorithm based on gradient descent is proposed. Firstly, in the training stage, quantum gradient descent was used to obtain the training parameters, which reduces the time complexity of a single iteration from the classical polynomial level to the logarithmic level. Then, in the classification stage, we built a quantum classifier that can classify multiple samples at the same time, thereby improving the efficiency of classification. Finally, the simulation experiments proved the classification ability of our quantum support vector machine.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum support vector machine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum gradient descent</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum computing</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Nan</subfield><subfield code="0">(orcid)0000-0001-9269-8079</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Rui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Zichen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Hailiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of theoretical physics</subfield><subfield code="d">Springer US, 1968</subfield><subfield code="g">61(2022), 3 vom: März</subfield><subfield code="w">(DE-627)129546097</subfield><subfield code="w">(DE-600)218277-4</subfield><subfield code="w">(DE-576)014996413</subfield><subfield code="x">0020-7748</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:61</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">month:03</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10773-022-05040-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">61</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="c">03</subfield></datafield></record></collection>
|
author |
Li, Hong |
spellingShingle |
Li, Hong ddc 530 bkl 33.00 misc Quantum support vector machine misc Quantum gradient descent misc Quantum machine learning misc Quantum computing Quantum Support Vector Machine Based on Gradient Descent |
authorStr |
Li, Hong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129546097 |
format |
Article |
dewey-ones |
530 - Physics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0020-7748 |
topic_title |
530 VZ 33.00 bkl Quantum Support Vector Machine Based on Gradient Descent Quantum support vector machine Quantum gradient descent Quantum machine learning Quantum computing |
topic |
ddc 530 bkl 33.00 misc Quantum support vector machine misc Quantum gradient descent misc Quantum machine learning misc Quantum computing |
topic_unstemmed |
ddc 530 bkl 33.00 misc Quantum support vector machine misc Quantum gradient descent misc Quantum machine learning misc Quantum computing |
topic_browse |
ddc 530 bkl 33.00 misc Quantum support vector machine misc Quantum gradient descent misc Quantum machine learning misc Quantum computing |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
International journal of theoretical physics |
hierarchy_parent_id |
129546097 |
dewey-tens |
530 - Physics |
hierarchy_top_title |
International journal of theoretical physics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129546097 (DE-600)218277-4 (DE-576)014996413 |
title |
Quantum Support Vector Machine Based on Gradient Descent |
ctrlnum |
(DE-627)OLC207836181X (DE-He213)s10773-022-05040-x-p |
title_full |
Quantum Support Vector Machine Based on Gradient Descent |
author_sort |
Li, Hong |
journal |
International journal of theoretical physics |
journalStr |
International journal of theoretical physics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Li, Hong Jiang, Nan Zhang, Rui Wang, Zichen Wang, Hailiang |
container_volume |
61 |
class |
530 VZ 33.00 bkl |
format_se |
Aufsätze |
author-letter |
Li, Hong |
doi_str_mv |
10.1007/s10773-022-05040-x |
normlink |
(ORCID)0000-0001-9269-8079 |
normlink_prefix_str_mv |
(orcid)0000-0001-9269-8079 |
dewey-full |
530 |
title_sort |
quantum support vector machine based on gradient descent |
title_auth |
Quantum Support Vector Machine Based on Gradient Descent |
abstract |
Abstract Support vector machine is a supervised machine learning algorithm, which is usually solved by iterative method. Quantum algorithms have significant advantages over classical algorithms in terms of speed and capacity. In this work, a quantum support vector machine algorithm based on gradient descent is proposed. Firstly, in the training stage, quantum gradient descent was used to obtain the training parameters, which reduces the time complexity of a single iteration from the classical polynomial level to the logarithmic level. Then, in the classification stage, we built a quantum classifier that can classify multiple samples at the same time, thereby improving the efficiency of classification. Finally, the simulation experiments proved the classification ability of our quantum support vector machine. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
abstractGer |
Abstract Support vector machine is a supervised machine learning algorithm, which is usually solved by iterative method. Quantum algorithms have significant advantages over classical algorithms in terms of speed and capacity. In this work, a quantum support vector machine algorithm based on gradient descent is proposed. Firstly, in the training stage, quantum gradient descent was used to obtain the training parameters, which reduces the time complexity of a single iteration from the classical polynomial level to the logarithmic level. Then, in the classification stage, we built a quantum classifier that can classify multiple samples at the same time, thereby improving the efficiency of classification. Finally, the simulation experiments proved the classification ability of our quantum support vector machine. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
abstract_unstemmed |
Abstract Support vector machine is a supervised machine learning algorithm, which is usually solved by iterative method. Quantum algorithms have significant advantages over classical algorithms in terms of speed and capacity. In this work, a quantum support vector machine algorithm based on gradient descent is proposed. Firstly, in the training stage, quantum gradient descent was used to obtain the training parameters, which reduces the time complexity of a single iteration from the classical polynomial level to the logarithmic level. Then, in the classification stage, we built a quantum classifier that can classify multiple samples at the same time, thereby improving the efficiency of classification. Finally, the simulation experiments proved the classification ability of our quantum support vector machine. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY |
container_issue |
3 |
title_short |
Quantum Support Vector Machine Based on Gradient Descent |
url |
https://doi.org/10.1007/s10773-022-05040-x |
remote_bool |
false |
author2 |
Jiang, Nan Zhang, Rui Wang, Zichen Wang, Hailiang |
author2Str |
Jiang, Nan Zhang, Rui Wang, Zichen Wang, Hailiang |
ppnlink |
129546097 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10773-022-05040-x |
up_date |
2024-07-03T20:04:49.876Z |
_version_ |
1803589611553816576 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC207836181X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506005325.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10773-022-05040-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC207836181X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10773-022-05040-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">530</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">33.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Hong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Quantum Support Vector Machine Based on Gradient Descent</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Support vector machine is a supervised machine learning algorithm, which is usually solved by iterative method. Quantum algorithms have significant advantages over classical algorithms in terms of speed and capacity. In this work, a quantum support vector machine algorithm based on gradient descent is proposed. Firstly, in the training stage, quantum gradient descent was used to obtain the training parameters, which reduces the time complexity of a single iteration from the classical polynomial level to the logarithmic level. Then, in the classification stage, we built a quantum classifier that can classify multiple samples at the same time, thereby improving the efficiency of classification. Finally, the simulation experiments proved the classification ability of our quantum support vector machine.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum support vector machine</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum gradient descent</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum machine learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Quantum computing</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Nan</subfield><subfield code="0">(orcid)0000-0001-9269-8079</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Rui</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Zichen</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Hailiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">International journal of theoretical physics</subfield><subfield code="d">Springer US, 1968</subfield><subfield code="g">61(2022), 3 vom: März</subfield><subfield code="w">(DE-627)129546097</subfield><subfield code="w">(DE-600)218277-4</subfield><subfield code="w">(DE-576)014996413</subfield><subfield code="x">0020-7748</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:61</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">month:03</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10773-022-05040-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">33.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">61</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="c">03</subfield></datafield></record></collection>
|
score |
7.402231 |