Homogeneous involutions on upper triangular matrices
Abstract Let K be a field of characteristic different from 2 and let G be a group. If the algebra $$UT_n$$ of $$n\times n$$ upper triangular matrices over K is endowed with a G-grading $$\Gamma : UT_n=\oplus _{g\in G}A_g$$, we give necessary and sufficient conditions on $$\Gamma $$ that guarantees t...
Ausführliche Beschreibung
Autor*in: |
Castilho de Mello, Thiago [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Nature Switzerland AG 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Archiv der Mathematik - Springer International Publishing, 1948, 118(2022), 4 vom: 10. März, Seite 365-374 |
---|---|
Übergeordnetes Werk: |
volume:118 ; year:2022 ; number:4 ; day:10 ; month:03 ; pages:365-374 |
Links: |
---|
DOI / URN: |
10.1007/s00013-022-01712-6 |
---|
Katalog-ID: |
OLC2078390631 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2078390631 | ||
003 | DE-627 | ||
005 | 20240316005735.0 | ||
007 | tu | ||
008 | 221220s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00013-022-01712-6 |2 doi | |
035 | |a (DE-627)OLC2078390631 | ||
035 | |a (DE-He213)s00013-022-01712-6-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |a 050 |q VZ |
084 | |a 17,1 |2 ssgn | ||
084 | |a 31.00 |2 bkl | ||
100 | 1 | |a Castilho de Mello, Thiago |e verfasserin |0 (orcid)0000-0002-6988-0910 |4 aut | |
245 | 1 | 0 | |a Homogeneous involutions on upper triangular matrices |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Nature Switzerland AG 2022 | ||
520 | |a Abstract Let K be a field of characteristic different from 2 and let G be a group. If the algebra $$UT_n$$ of $$n\times n$$ upper triangular matrices over K is endowed with a G-grading $$\Gamma : UT_n=\oplus _{g\in G}A_g$$, we give necessary and sufficient conditions on $$\Gamma $$ that guarantees the existence of a homogeneous antiautomorphism on A, i.e., an antiautomorphism $$\varphi $$ satisfying $$\varphi (A_g)=A_{\theta (g)}$$ for some permutation $$\theta $$ of the support of the grading. It turns out that $$UT_n$$ admits a homogeneous antiautomorphism if and only if the reflection involution of $$UT_n$$ is homogeneous. Moreover, we prove that if one homogeneous antiautomorphism of $$UT_n$$ is defined by the map $$\theta $$, then any other homogeneous antiautomorphism is defined by the same map $$\theta $$. | ||
650 | 4 | |a Upper triangular matrices | |
650 | 4 | |a Graded algebras | |
650 | 4 | |a Involutions | |
650 | 4 | |a Graded involutions | |
650 | 4 | |a Degree-inverting involutions | |
650 | 4 | |a Homogeneous involutions | |
773 | 0 | 8 | |i Enthalten in |t Archiv der Mathematik |d Springer International Publishing, 1948 |g 118(2022), 4 vom: 10. März, Seite 365-374 |w (DE-627)129061581 |w (DE-600)475-3 |w (DE-576)014392364 |x 0003-889X |7 nnns |
773 | 1 | 8 | |g volume:118 |g year:2022 |g number:4 |g day:10 |g month:03 |g pages:365-374 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00013-022-01712-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_2004 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2030 | ||
912 | |a GBV_ILN_2088 | ||
912 | |a GBV_ILN_2409 | ||
912 | |a GBV_ILN_4027 | ||
912 | |a GBV_ILN_4277 | ||
936 | b | k | |a 31.00 |j Mathematik: Allgemeines |j Mathematik: Allgemeines |q VZ |
951 | |a AR | ||
952 | |d 118 |j 2022 |e 4 |b 10 |c 03 |h 365-374 |
author_variant |
d m t c dmt dmtc |
---|---|
matchkey_str |
article:0003889X:2022----::ooeeuivltosnpeti |
hierarchy_sort_str |
2022 |
bklnumber |
31.00 |
publishDate |
2022 |
allfields |
10.1007/s00013-022-01712-6 doi (DE-627)OLC2078390631 (DE-He213)s00013-022-01712-6-p DE-627 ger DE-627 rakwb eng 510 050 VZ 17,1 ssgn 31.00 bkl Castilho de Mello, Thiago verfasserin (orcid)0000-0002-6988-0910 aut Homogeneous involutions on upper triangular matrices 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature Switzerland AG 2022 Abstract Let K be a field of characteristic different from 2 and let G be a group. If the algebra $$UT_n$$ of $$n\times n$$ upper triangular matrices over K is endowed with a G-grading $$\Gamma : UT_n=\oplus _{g\in G}A_g$$, we give necessary and sufficient conditions on $$\Gamma $$ that guarantees the existence of a homogeneous antiautomorphism on A, i.e., an antiautomorphism $$\varphi $$ satisfying $$\varphi (A_g)=A_{\theta (g)}$$ for some permutation $$\theta $$ of the support of the grading. It turns out that $$UT_n$$ admits a homogeneous antiautomorphism if and only if the reflection involution of $$UT_n$$ is homogeneous. Moreover, we prove that if one homogeneous antiautomorphism of $$UT_n$$ is defined by the map $$\theta $$, then any other homogeneous antiautomorphism is defined by the same map $$\theta $$. Upper triangular matrices Graded algebras Involutions Graded involutions Degree-inverting involutions Homogeneous involutions Enthalten in Archiv der Mathematik Springer International Publishing, 1948 118(2022), 4 vom: 10. März, Seite 365-374 (DE-627)129061581 (DE-600)475-3 (DE-576)014392364 0003-889X nnns volume:118 year:2022 number:4 day:10 month:03 pages:365-374 https://doi.org/10.1007/s00013-022-01712-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_2004 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4277 31.00 Mathematik: Allgemeines Mathematik: Allgemeines VZ AR 118 2022 4 10 03 365-374 |
spelling |
10.1007/s00013-022-01712-6 doi (DE-627)OLC2078390631 (DE-He213)s00013-022-01712-6-p DE-627 ger DE-627 rakwb eng 510 050 VZ 17,1 ssgn 31.00 bkl Castilho de Mello, Thiago verfasserin (orcid)0000-0002-6988-0910 aut Homogeneous involutions on upper triangular matrices 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature Switzerland AG 2022 Abstract Let K be a field of characteristic different from 2 and let G be a group. If the algebra $$UT_n$$ of $$n\times n$$ upper triangular matrices over K is endowed with a G-grading $$\Gamma : UT_n=\oplus _{g\in G}A_g$$, we give necessary and sufficient conditions on $$\Gamma $$ that guarantees the existence of a homogeneous antiautomorphism on A, i.e., an antiautomorphism $$\varphi $$ satisfying $$\varphi (A_g)=A_{\theta (g)}$$ for some permutation $$\theta $$ of the support of the grading. It turns out that $$UT_n$$ admits a homogeneous antiautomorphism if and only if the reflection involution of $$UT_n$$ is homogeneous. Moreover, we prove that if one homogeneous antiautomorphism of $$UT_n$$ is defined by the map $$\theta $$, then any other homogeneous antiautomorphism is defined by the same map $$\theta $$. Upper triangular matrices Graded algebras Involutions Graded involutions Degree-inverting involutions Homogeneous involutions Enthalten in Archiv der Mathematik Springer International Publishing, 1948 118(2022), 4 vom: 10. März, Seite 365-374 (DE-627)129061581 (DE-600)475-3 (DE-576)014392364 0003-889X nnns volume:118 year:2022 number:4 day:10 month:03 pages:365-374 https://doi.org/10.1007/s00013-022-01712-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_2004 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4277 31.00 Mathematik: Allgemeines Mathematik: Allgemeines VZ AR 118 2022 4 10 03 365-374 |
allfields_unstemmed |
10.1007/s00013-022-01712-6 doi (DE-627)OLC2078390631 (DE-He213)s00013-022-01712-6-p DE-627 ger DE-627 rakwb eng 510 050 VZ 17,1 ssgn 31.00 bkl Castilho de Mello, Thiago verfasserin (orcid)0000-0002-6988-0910 aut Homogeneous involutions on upper triangular matrices 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature Switzerland AG 2022 Abstract Let K be a field of characteristic different from 2 and let G be a group. If the algebra $$UT_n$$ of $$n\times n$$ upper triangular matrices over K is endowed with a G-grading $$\Gamma : UT_n=\oplus _{g\in G}A_g$$, we give necessary and sufficient conditions on $$\Gamma $$ that guarantees the existence of a homogeneous antiautomorphism on A, i.e., an antiautomorphism $$\varphi $$ satisfying $$\varphi (A_g)=A_{\theta (g)}$$ for some permutation $$\theta $$ of the support of the grading. It turns out that $$UT_n$$ admits a homogeneous antiautomorphism if and only if the reflection involution of $$UT_n$$ is homogeneous. Moreover, we prove that if one homogeneous antiautomorphism of $$UT_n$$ is defined by the map $$\theta $$, then any other homogeneous antiautomorphism is defined by the same map $$\theta $$. Upper triangular matrices Graded algebras Involutions Graded involutions Degree-inverting involutions Homogeneous involutions Enthalten in Archiv der Mathematik Springer International Publishing, 1948 118(2022), 4 vom: 10. März, Seite 365-374 (DE-627)129061581 (DE-600)475-3 (DE-576)014392364 0003-889X nnns volume:118 year:2022 number:4 day:10 month:03 pages:365-374 https://doi.org/10.1007/s00013-022-01712-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_2004 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4277 31.00 Mathematik: Allgemeines Mathematik: Allgemeines VZ AR 118 2022 4 10 03 365-374 |
allfieldsGer |
10.1007/s00013-022-01712-6 doi (DE-627)OLC2078390631 (DE-He213)s00013-022-01712-6-p DE-627 ger DE-627 rakwb eng 510 050 VZ 17,1 ssgn 31.00 bkl Castilho de Mello, Thiago verfasserin (orcid)0000-0002-6988-0910 aut Homogeneous involutions on upper triangular matrices 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature Switzerland AG 2022 Abstract Let K be a field of characteristic different from 2 and let G be a group. If the algebra $$UT_n$$ of $$n\times n$$ upper triangular matrices over K is endowed with a G-grading $$\Gamma : UT_n=\oplus _{g\in G}A_g$$, we give necessary and sufficient conditions on $$\Gamma $$ that guarantees the existence of a homogeneous antiautomorphism on A, i.e., an antiautomorphism $$\varphi $$ satisfying $$\varphi (A_g)=A_{\theta (g)}$$ for some permutation $$\theta $$ of the support of the grading. It turns out that $$UT_n$$ admits a homogeneous antiautomorphism if and only if the reflection involution of $$UT_n$$ is homogeneous. Moreover, we prove that if one homogeneous antiautomorphism of $$UT_n$$ is defined by the map $$\theta $$, then any other homogeneous antiautomorphism is defined by the same map $$\theta $$. Upper triangular matrices Graded algebras Involutions Graded involutions Degree-inverting involutions Homogeneous involutions Enthalten in Archiv der Mathematik Springer International Publishing, 1948 118(2022), 4 vom: 10. März, Seite 365-374 (DE-627)129061581 (DE-600)475-3 (DE-576)014392364 0003-889X nnns volume:118 year:2022 number:4 day:10 month:03 pages:365-374 https://doi.org/10.1007/s00013-022-01712-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_2004 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4277 31.00 Mathematik: Allgemeines Mathematik: Allgemeines VZ AR 118 2022 4 10 03 365-374 |
allfieldsSound |
10.1007/s00013-022-01712-6 doi (DE-627)OLC2078390631 (DE-He213)s00013-022-01712-6-p DE-627 ger DE-627 rakwb eng 510 050 VZ 17,1 ssgn 31.00 bkl Castilho de Mello, Thiago verfasserin (orcid)0000-0002-6988-0910 aut Homogeneous involutions on upper triangular matrices 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Nature Switzerland AG 2022 Abstract Let K be a field of characteristic different from 2 and let G be a group. If the algebra $$UT_n$$ of $$n\times n$$ upper triangular matrices over K is endowed with a G-grading $$\Gamma : UT_n=\oplus _{g\in G}A_g$$, we give necessary and sufficient conditions on $$\Gamma $$ that guarantees the existence of a homogeneous antiautomorphism on A, i.e., an antiautomorphism $$\varphi $$ satisfying $$\varphi (A_g)=A_{\theta (g)}$$ for some permutation $$\theta $$ of the support of the grading. It turns out that $$UT_n$$ admits a homogeneous antiautomorphism if and only if the reflection involution of $$UT_n$$ is homogeneous. Moreover, we prove that if one homogeneous antiautomorphism of $$UT_n$$ is defined by the map $$\theta $$, then any other homogeneous antiautomorphism is defined by the same map $$\theta $$. Upper triangular matrices Graded algebras Involutions Graded involutions Degree-inverting involutions Homogeneous involutions Enthalten in Archiv der Mathematik Springer International Publishing, 1948 118(2022), 4 vom: 10. März, Seite 365-374 (DE-627)129061581 (DE-600)475-3 (DE-576)014392364 0003-889X nnns volume:118 year:2022 number:4 day:10 month:03 pages:365-374 https://doi.org/10.1007/s00013-022-01712-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_2004 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4277 31.00 Mathematik: Allgemeines Mathematik: Allgemeines VZ AR 118 2022 4 10 03 365-374 |
language |
English |
source |
Enthalten in Archiv der Mathematik 118(2022), 4 vom: 10. März, Seite 365-374 volume:118 year:2022 number:4 day:10 month:03 pages:365-374 |
sourceStr |
Enthalten in Archiv der Mathematik 118(2022), 4 vom: 10. März, Seite 365-374 volume:118 year:2022 number:4 day:10 month:03 pages:365-374 |
format_phy_str_mv |
Article |
bklname |
Mathematik: Allgemeines |
institution |
findex.gbv.de |
topic_facet |
Upper triangular matrices Graded algebras Involutions Graded involutions Degree-inverting involutions Homogeneous involutions |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Archiv der Mathematik |
authorswithroles_txt_mv |
Castilho de Mello, Thiago @@aut@@ |
publishDateDaySort_date |
2022-03-10T00:00:00Z |
hierarchy_top_id |
129061581 |
dewey-sort |
3510 |
id |
OLC2078390631 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2078390631</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240316005735.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00013-022-01712-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2078390631</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00013-022-01712-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">050</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Castilho de Mello, Thiago</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6988-0910</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Homogeneous involutions on upper triangular matrices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Nature Switzerland AG 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Let K be a field of characteristic different from 2 and let G be a group. If the algebra $$UT_n$$ of $$n\times n$$ upper triangular matrices over K is endowed with a G-grading $$\Gamma : UT_n=\oplus _{g\in G}A_g$$, we give necessary and sufficient conditions on $$\Gamma $$ that guarantees the existence of a homogeneous antiautomorphism on A, i.e., an antiautomorphism $$\varphi $$ satisfying $$\varphi (A_g)=A_{\theta (g)}$$ for some permutation $$\theta $$ of the support of the grading. It turns out that $$UT_n$$ admits a homogeneous antiautomorphism if and only if the reflection involution of $$UT_n$$ is homogeneous. Moreover, we prove that if one homogeneous antiautomorphism of $$UT_n$$ is defined by the map $$\theta $$, then any other homogeneous antiautomorphism is defined by the same map $$\theta $$.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Upper triangular matrices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graded algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Involutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graded involutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Degree-inverting involutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homogeneous involutions</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Archiv der Mathematik</subfield><subfield code="d">Springer International Publishing, 1948</subfield><subfield code="g">118(2022), 4 vom: 10. März, Seite 365-374</subfield><subfield code="w">(DE-627)129061581</subfield><subfield code="w">(DE-600)475-3</subfield><subfield code="w">(DE-576)014392364</subfield><subfield code="x">0003-889X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:118</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4</subfield><subfield code="g">day:10</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:365-374</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00013-022-01712-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">118</subfield><subfield code="j">2022</subfield><subfield code="e">4</subfield><subfield code="b">10</subfield><subfield code="c">03</subfield><subfield code="h">365-374</subfield></datafield></record></collection>
|
author |
Castilho de Mello, Thiago |
spellingShingle |
Castilho de Mello, Thiago ddc 510 ssgn 17,1 bkl 31.00 misc Upper triangular matrices misc Graded algebras misc Involutions misc Graded involutions misc Degree-inverting involutions misc Homogeneous involutions Homogeneous involutions on upper triangular matrices |
authorStr |
Castilho de Mello, Thiago |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129061581 |
format |
Article |
dewey-ones |
510 - Mathematics 050 - General serial publications |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0003-889X |
topic_title |
510 050 VZ 17,1 ssgn 31.00 bkl Homogeneous involutions on upper triangular matrices Upper triangular matrices Graded algebras Involutions Graded involutions Degree-inverting involutions Homogeneous involutions |
topic |
ddc 510 ssgn 17,1 bkl 31.00 misc Upper triangular matrices misc Graded algebras misc Involutions misc Graded involutions misc Degree-inverting involutions misc Homogeneous involutions |
topic_unstemmed |
ddc 510 ssgn 17,1 bkl 31.00 misc Upper triangular matrices misc Graded algebras misc Involutions misc Graded involutions misc Degree-inverting involutions misc Homogeneous involutions |
topic_browse |
ddc 510 ssgn 17,1 bkl 31.00 misc Upper triangular matrices misc Graded algebras misc Involutions misc Graded involutions misc Degree-inverting involutions misc Homogeneous involutions |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Archiv der Mathematik |
hierarchy_parent_id |
129061581 |
dewey-tens |
510 - Mathematics 050 - Magazines, journals & serials |
hierarchy_top_title |
Archiv der Mathematik |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129061581 (DE-600)475-3 (DE-576)014392364 |
title |
Homogeneous involutions on upper triangular matrices |
ctrlnum |
(DE-627)OLC2078390631 (DE-He213)s00013-022-01712-6-p |
title_full |
Homogeneous involutions on upper triangular matrices |
author_sort |
Castilho de Mello, Thiago |
journal |
Archiv der Mathematik |
journalStr |
Archiv der Mathematik |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
365 |
author_browse |
Castilho de Mello, Thiago |
container_volume |
118 |
class |
510 050 VZ 17,1 ssgn 31.00 bkl |
format_se |
Aufsätze |
author-letter |
Castilho de Mello, Thiago |
doi_str_mv |
10.1007/s00013-022-01712-6 |
normlink |
(ORCID)0000-0002-6988-0910 |
normlink_prefix_str_mv |
(orcid)0000-0002-6988-0910 |
dewey-full |
510 050 |
title_sort |
homogeneous involutions on upper triangular matrices |
title_auth |
Homogeneous involutions on upper triangular matrices |
abstract |
Abstract Let K be a field of characteristic different from 2 and let G be a group. If the algebra $$UT_n$$ of $$n\times n$$ upper triangular matrices over K is endowed with a G-grading $$\Gamma : UT_n=\oplus _{g\in G}A_g$$, we give necessary and sufficient conditions on $$\Gamma $$ that guarantees the existence of a homogeneous antiautomorphism on A, i.e., an antiautomorphism $$\varphi $$ satisfying $$\varphi (A_g)=A_{\theta (g)}$$ for some permutation $$\theta $$ of the support of the grading. It turns out that $$UT_n$$ admits a homogeneous antiautomorphism if and only if the reflection involution of $$UT_n$$ is homogeneous. Moreover, we prove that if one homogeneous antiautomorphism of $$UT_n$$ is defined by the map $$\theta $$, then any other homogeneous antiautomorphism is defined by the same map $$\theta $$. © Springer Nature Switzerland AG 2022 |
abstractGer |
Abstract Let K be a field of characteristic different from 2 and let G be a group. If the algebra $$UT_n$$ of $$n\times n$$ upper triangular matrices over K is endowed with a G-grading $$\Gamma : UT_n=\oplus _{g\in G}A_g$$, we give necessary and sufficient conditions on $$\Gamma $$ that guarantees the existence of a homogeneous antiautomorphism on A, i.e., an antiautomorphism $$\varphi $$ satisfying $$\varphi (A_g)=A_{\theta (g)}$$ for some permutation $$\theta $$ of the support of the grading. It turns out that $$UT_n$$ admits a homogeneous antiautomorphism if and only if the reflection involution of $$UT_n$$ is homogeneous. Moreover, we prove that if one homogeneous antiautomorphism of $$UT_n$$ is defined by the map $$\theta $$, then any other homogeneous antiautomorphism is defined by the same map $$\theta $$. © Springer Nature Switzerland AG 2022 |
abstract_unstemmed |
Abstract Let K be a field of characteristic different from 2 and let G be a group. If the algebra $$UT_n$$ of $$n\times n$$ upper triangular matrices over K is endowed with a G-grading $$\Gamma : UT_n=\oplus _{g\in G}A_g$$, we give necessary and sufficient conditions on $$\Gamma $$ that guarantees the existence of a homogeneous antiautomorphism on A, i.e., an antiautomorphism $$\varphi $$ satisfying $$\varphi (A_g)=A_{\theta (g)}$$ for some permutation $$\theta $$ of the support of the grading. It turns out that $$UT_n$$ admits a homogeneous antiautomorphism if and only if the reflection involution of $$UT_n$$ is homogeneous. Moreover, we prove that if one homogeneous antiautomorphism of $$UT_n$$ is defined by the map $$\theta $$, then any other homogeneous antiautomorphism is defined by the same map $$\theta $$. © Springer Nature Switzerland AG 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_40 GBV_ILN_2004 GBV_ILN_2018 GBV_ILN_2030 GBV_ILN_2088 GBV_ILN_2409 GBV_ILN_4027 GBV_ILN_4277 |
container_issue |
4 |
title_short |
Homogeneous involutions on upper triangular matrices |
url |
https://doi.org/10.1007/s00013-022-01712-6 |
remote_bool |
false |
ppnlink |
129061581 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00013-022-01712-6 |
up_date |
2024-07-03T20:12:57.696Z |
_version_ |
1803590123072258048 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2078390631</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20240316005735.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00013-022-01712-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2078390631</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00013-022-01712-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="a">050</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Castilho de Mello, Thiago</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-6988-0910</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Homogeneous involutions on upper triangular matrices</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Nature Switzerland AG 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Let K be a field of characteristic different from 2 and let G be a group. If the algebra $$UT_n$$ of $$n\times n$$ upper triangular matrices over K is endowed with a G-grading $$\Gamma : UT_n=\oplus _{g\in G}A_g$$, we give necessary and sufficient conditions on $$\Gamma $$ that guarantees the existence of a homogeneous antiautomorphism on A, i.e., an antiautomorphism $$\varphi $$ satisfying $$\varphi (A_g)=A_{\theta (g)}$$ for some permutation $$\theta $$ of the support of the grading. It turns out that $$UT_n$$ admits a homogeneous antiautomorphism if and only if the reflection involution of $$UT_n$$ is homogeneous. Moreover, we prove that if one homogeneous antiautomorphism of $$UT_n$$ is defined by the map $$\theta $$, then any other homogeneous antiautomorphism is defined by the same map $$\theta $$.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Upper triangular matrices</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graded algebras</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Involutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graded involutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Degree-inverting involutions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Homogeneous involutions</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Archiv der Mathematik</subfield><subfield code="d">Springer International Publishing, 1948</subfield><subfield code="g">118(2022), 4 vom: 10. März, Seite 365-374</subfield><subfield code="w">(DE-627)129061581</subfield><subfield code="w">(DE-600)475-3</subfield><subfield code="w">(DE-576)014392364</subfield><subfield code="x">0003-889X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:118</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4</subfield><subfield code="g">day:10</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:365-374</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00013-022-01712-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2004</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2030</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2088</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2409</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="j">Mathematik: Allgemeines</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">118</subfield><subfield code="j">2022</subfield><subfield code="e">4</subfield><subfield code="b">10</subfield><subfield code="c">03</subfield><subfield code="h">365-374</subfield></datafield></record></collection>
|
score |
7.398178 |