Did clickbait crack the code on virality?
Abstract Although clickbait is a ubiquitous tactic in digital media, we challenge the popular belief that clickbait systematically leads to enhanced sharing of online content on social media. Using the Persuasion Knowledge Model, we predict that clickbait tactics may be perceived by some readers as...
Ausführliche Beschreibung
Autor*in: |
Mukherjee, Prithwiraj [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Academy of Marketing Science 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of the Academy of Marketing Science - Springer US, 1973, 50(2022), 3 vom: 29. Jan., Seite 482-502 |
---|---|
Übergeordnetes Werk: |
volume:50 ; year:2022 ; number:3 ; day:29 ; month:01 ; pages:482-502 |
Links: |
---|
DOI / URN: |
10.1007/s11747-021-00830-x |
---|
Katalog-ID: |
OLC2078427535 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2078427535 | ||
003 | DE-627 | ||
005 | 20230506004807.0 | ||
007 | tu | ||
008 | 221220s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11747-021-00830-x |2 doi | |
035 | |a (DE-627)OLC2078427535 | ||
035 | |a (DE-He213)s11747-021-00830-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 330 |q VZ |
084 | |a 3,2 |2 ssgn | ||
100 | 1 | |a Mukherjee, Prithwiraj |e verfasserin |0 (orcid)0000-0003-2498-5599 |4 aut | |
245 | 1 | 0 | |a Did clickbait crack the code on virality? |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Academy of Marketing Science 2021 | ||
520 | |a Abstract Although clickbait is a ubiquitous tactic in digital media, we challenge the popular belief that clickbait systematically leads to enhanced sharing of online content on social media. Using the Persuasion Knowledge Model, we predict that clickbait tactics may be perceived by some readers as a manipulative attempt, leading to source derogation where the publisher may be perceived as less competent and trustworthy. This, in turn, may reduce some readers’ intention to share content. Using a controlled experiment, we confirm that high-emotional headlines are shared more and show evidence that clickbait often leads to inferences of manipulative intent and source derogation. We then use a well-known secondary data set containing 19,386 articles from 27 leading online publishers. We supplement it with Twitter share data, sentiment analysis, topic modeling, and additional control variables. We confirm that, on average, clickbait articles elicit far fewer shares than non-clickbait articles. Our results are stable, with large effect sizes even after controlling for endogenous selection. | ||
650 | 4 | |a Social media | |
650 | 4 | |a Clickbait | |
650 | 4 | |a Persuasion Knowledge Model | |
650 | 4 | |a Source derogation | |
650 | 4 | |a Sharing | |
650 | 4 | |a Topic modeling | |
650 | 4 | |a Sentiment analysis | |
650 | 4 | |a Propensity score matching | |
700 | 1 | |a Dutta, Souvik |4 aut | |
700 | 1 | |a De Bruyn, Arnaud |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of the Academy of Marketing Science |d Springer US, 1973 |g 50(2022), 3 vom: 29. Jan., Seite 482-502 |w (DE-627)182223736 |w (DE-600)1187865-4 |w (DE-576)040097765 |x 0092-0703 |7 nnns |
773 | 1 | 8 | |g volume:50 |g year:2022 |g number:3 |g day:29 |g month:01 |g pages:482-502 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11747-021-00830-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-WIW | ||
912 | |a GBV_ILN_20 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_24 | ||
951 | |a AR | ||
952 | |d 50 |j 2022 |e 3 |b 29 |c 01 |h 482-502 |
author_variant |
p m pm s d sd b a d ba bad |
---|---|
matchkey_str |
article:00920703:2022----::icikatrcteoe |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s11747-021-00830-x doi (DE-627)OLC2078427535 (DE-He213)s11747-021-00830-x-p DE-627 ger DE-627 rakwb eng 330 VZ 3,2 ssgn Mukherjee, Prithwiraj verfasserin (orcid)0000-0003-2498-5599 aut Did clickbait crack the code on virality? 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Academy of Marketing Science 2021 Abstract Although clickbait is a ubiquitous tactic in digital media, we challenge the popular belief that clickbait systematically leads to enhanced sharing of online content on social media. Using the Persuasion Knowledge Model, we predict that clickbait tactics may be perceived by some readers as a manipulative attempt, leading to source derogation where the publisher may be perceived as less competent and trustworthy. This, in turn, may reduce some readers’ intention to share content. Using a controlled experiment, we confirm that high-emotional headlines are shared more and show evidence that clickbait often leads to inferences of manipulative intent and source derogation. We then use a well-known secondary data set containing 19,386 articles from 27 leading online publishers. We supplement it with Twitter share data, sentiment analysis, topic modeling, and additional control variables. We confirm that, on average, clickbait articles elicit far fewer shares than non-clickbait articles. Our results are stable, with large effect sizes even after controlling for endogenous selection. Social media Clickbait Persuasion Knowledge Model Source derogation Sharing Topic modeling Sentiment analysis Propensity score matching Dutta, Souvik aut De Bruyn, Arnaud aut Enthalten in Journal of the Academy of Marketing Science Springer US, 1973 50(2022), 3 vom: 29. Jan., Seite 482-502 (DE-627)182223736 (DE-600)1187865-4 (DE-576)040097765 0092-0703 nnns volume:50 year:2022 number:3 day:29 month:01 pages:482-502 https://doi.org/10.1007/s11747-021-00830-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 AR 50 2022 3 29 01 482-502 |
spelling |
10.1007/s11747-021-00830-x doi (DE-627)OLC2078427535 (DE-He213)s11747-021-00830-x-p DE-627 ger DE-627 rakwb eng 330 VZ 3,2 ssgn Mukherjee, Prithwiraj verfasserin (orcid)0000-0003-2498-5599 aut Did clickbait crack the code on virality? 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Academy of Marketing Science 2021 Abstract Although clickbait is a ubiquitous tactic in digital media, we challenge the popular belief that clickbait systematically leads to enhanced sharing of online content on social media. Using the Persuasion Knowledge Model, we predict that clickbait tactics may be perceived by some readers as a manipulative attempt, leading to source derogation where the publisher may be perceived as less competent and trustworthy. This, in turn, may reduce some readers’ intention to share content. Using a controlled experiment, we confirm that high-emotional headlines are shared more and show evidence that clickbait often leads to inferences of manipulative intent and source derogation. We then use a well-known secondary data set containing 19,386 articles from 27 leading online publishers. We supplement it with Twitter share data, sentiment analysis, topic modeling, and additional control variables. We confirm that, on average, clickbait articles elicit far fewer shares than non-clickbait articles. Our results are stable, with large effect sizes even after controlling for endogenous selection. Social media Clickbait Persuasion Knowledge Model Source derogation Sharing Topic modeling Sentiment analysis Propensity score matching Dutta, Souvik aut De Bruyn, Arnaud aut Enthalten in Journal of the Academy of Marketing Science Springer US, 1973 50(2022), 3 vom: 29. Jan., Seite 482-502 (DE-627)182223736 (DE-600)1187865-4 (DE-576)040097765 0092-0703 nnns volume:50 year:2022 number:3 day:29 month:01 pages:482-502 https://doi.org/10.1007/s11747-021-00830-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 AR 50 2022 3 29 01 482-502 |
allfields_unstemmed |
10.1007/s11747-021-00830-x doi (DE-627)OLC2078427535 (DE-He213)s11747-021-00830-x-p DE-627 ger DE-627 rakwb eng 330 VZ 3,2 ssgn Mukherjee, Prithwiraj verfasserin (orcid)0000-0003-2498-5599 aut Did clickbait crack the code on virality? 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Academy of Marketing Science 2021 Abstract Although clickbait is a ubiquitous tactic in digital media, we challenge the popular belief that clickbait systematically leads to enhanced sharing of online content on social media. Using the Persuasion Knowledge Model, we predict that clickbait tactics may be perceived by some readers as a manipulative attempt, leading to source derogation where the publisher may be perceived as less competent and trustworthy. This, in turn, may reduce some readers’ intention to share content. Using a controlled experiment, we confirm that high-emotional headlines are shared more and show evidence that clickbait often leads to inferences of manipulative intent and source derogation. We then use a well-known secondary data set containing 19,386 articles from 27 leading online publishers. We supplement it with Twitter share data, sentiment analysis, topic modeling, and additional control variables. We confirm that, on average, clickbait articles elicit far fewer shares than non-clickbait articles. Our results are stable, with large effect sizes even after controlling for endogenous selection. Social media Clickbait Persuasion Knowledge Model Source derogation Sharing Topic modeling Sentiment analysis Propensity score matching Dutta, Souvik aut De Bruyn, Arnaud aut Enthalten in Journal of the Academy of Marketing Science Springer US, 1973 50(2022), 3 vom: 29. Jan., Seite 482-502 (DE-627)182223736 (DE-600)1187865-4 (DE-576)040097765 0092-0703 nnns volume:50 year:2022 number:3 day:29 month:01 pages:482-502 https://doi.org/10.1007/s11747-021-00830-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 AR 50 2022 3 29 01 482-502 |
allfieldsGer |
10.1007/s11747-021-00830-x doi (DE-627)OLC2078427535 (DE-He213)s11747-021-00830-x-p DE-627 ger DE-627 rakwb eng 330 VZ 3,2 ssgn Mukherjee, Prithwiraj verfasserin (orcid)0000-0003-2498-5599 aut Did clickbait crack the code on virality? 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Academy of Marketing Science 2021 Abstract Although clickbait is a ubiquitous tactic in digital media, we challenge the popular belief that clickbait systematically leads to enhanced sharing of online content on social media. Using the Persuasion Knowledge Model, we predict that clickbait tactics may be perceived by some readers as a manipulative attempt, leading to source derogation where the publisher may be perceived as less competent and trustworthy. This, in turn, may reduce some readers’ intention to share content. Using a controlled experiment, we confirm that high-emotional headlines are shared more and show evidence that clickbait often leads to inferences of manipulative intent and source derogation. We then use a well-known secondary data set containing 19,386 articles from 27 leading online publishers. We supplement it with Twitter share data, sentiment analysis, topic modeling, and additional control variables. We confirm that, on average, clickbait articles elicit far fewer shares than non-clickbait articles. Our results are stable, with large effect sizes even after controlling for endogenous selection. Social media Clickbait Persuasion Knowledge Model Source derogation Sharing Topic modeling Sentiment analysis Propensity score matching Dutta, Souvik aut De Bruyn, Arnaud aut Enthalten in Journal of the Academy of Marketing Science Springer US, 1973 50(2022), 3 vom: 29. Jan., Seite 482-502 (DE-627)182223736 (DE-600)1187865-4 (DE-576)040097765 0092-0703 nnns volume:50 year:2022 number:3 day:29 month:01 pages:482-502 https://doi.org/10.1007/s11747-021-00830-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 AR 50 2022 3 29 01 482-502 |
allfieldsSound |
10.1007/s11747-021-00830-x doi (DE-627)OLC2078427535 (DE-He213)s11747-021-00830-x-p DE-627 ger DE-627 rakwb eng 330 VZ 3,2 ssgn Mukherjee, Prithwiraj verfasserin (orcid)0000-0003-2498-5599 aut Did clickbait crack the code on virality? 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Academy of Marketing Science 2021 Abstract Although clickbait is a ubiquitous tactic in digital media, we challenge the popular belief that clickbait systematically leads to enhanced sharing of online content on social media. Using the Persuasion Knowledge Model, we predict that clickbait tactics may be perceived by some readers as a manipulative attempt, leading to source derogation where the publisher may be perceived as less competent and trustworthy. This, in turn, may reduce some readers’ intention to share content. Using a controlled experiment, we confirm that high-emotional headlines are shared more and show evidence that clickbait often leads to inferences of manipulative intent and source derogation. We then use a well-known secondary data set containing 19,386 articles from 27 leading online publishers. We supplement it with Twitter share data, sentiment analysis, topic modeling, and additional control variables. We confirm that, on average, clickbait articles elicit far fewer shares than non-clickbait articles. Our results are stable, with large effect sizes even after controlling for endogenous selection. Social media Clickbait Persuasion Knowledge Model Source derogation Sharing Topic modeling Sentiment analysis Propensity score matching Dutta, Souvik aut De Bruyn, Arnaud aut Enthalten in Journal of the Academy of Marketing Science Springer US, 1973 50(2022), 3 vom: 29. Jan., Seite 482-502 (DE-627)182223736 (DE-600)1187865-4 (DE-576)040097765 0092-0703 nnns volume:50 year:2022 number:3 day:29 month:01 pages:482-502 https://doi.org/10.1007/s11747-021-00830-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 AR 50 2022 3 29 01 482-502 |
language |
English |
source |
Enthalten in Journal of the Academy of Marketing Science 50(2022), 3 vom: 29. Jan., Seite 482-502 volume:50 year:2022 number:3 day:29 month:01 pages:482-502 |
sourceStr |
Enthalten in Journal of the Academy of Marketing Science 50(2022), 3 vom: 29. Jan., Seite 482-502 volume:50 year:2022 number:3 day:29 month:01 pages:482-502 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Social media Clickbait Persuasion Knowledge Model Source derogation Sharing Topic modeling Sentiment analysis Propensity score matching |
dewey-raw |
330 |
isfreeaccess_bool |
false |
container_title |
Journal of the Academy of Marketing Science |
authorswithroles_txt_mv |
Mukherjee, Prithwiraj @@aut@@ Dutta, Souvik @@aut@@ De Bruyn, Arnaud @@aut@@ |
publishDateDaySort_date |
2022-01-29T00:00:00Z |
hierarchy_top_id |
182223736 |
dewey-sort |
3330 |
id |
OLC2078427535 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2078427535</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506004807.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11747-021-00830-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2078427535</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11747-021-00830-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">330</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">3,2</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mukherjee, Prithwiraj</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2498-5599</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Did clickbait crack the code on virality?</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Academy of Marketing Science 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Although clickbait is a ubiquitous tactic in digital media, we challenge the popular belief that clickbait systematically leads to enhanced sharing of online content on social media. Using the Persuasion Knowledge Model, we predict that clickbait tactics may be perceived by some readers as a manipulative attempt, leading to source derogation where the publisher may be perceived as less competent and trustworthy. This, in turn, may reduce some readers’ intention to share content. Using a controlled experiment, we confirm that high-emotional headlines are shared more and show evidence that clickbait often leads to inferences of manipulative intent and source derogation. We then use a well-known secondary data set containing 19,386 articles from 27 leading online publishers. We supplement it with Twitter share data, sentiment analysis, topic modeling, and additional control variables. We confirm that, on average, clickbait articles elicit far fewer shares than non-clickbait articles. Our results are stable, with large effect sizes even after controlling for endogenous selection.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Social media</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clickbait</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Persuasion Knowledge Model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Source derogation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sharing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topic modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sentiment analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Propensity score matching</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dutta, Souvik</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">De Bruyn, Arnaud</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of the Academy of Marketing Science</subfield><subfield code="d">Springer US, 1973</subfield><subfield code="g">50(2022), 3 vom: 29. Jan., Seite 482-502</subfield><subfield code="w">(DE-627)182223736</subfield><subfield code="w">(DE-600)1187865-4</subfield><subfield code="w">(DE-576)040097765</subfield><subfield code="x">0092-0703</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:50</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">day:29</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:482-502</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11747-021-00830-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">50</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="b">29</subfield><subfield code="c">01</subfield><subfield code="h">482-502</subfield></datafield></record></collection>
|
author |
Mukherjee, Prithwiraj |
spellingShingle |
Mukherjee, Prithwiraj ddc 330 ssgn 3,2 misc Social media misc Clickbait misc Persuasion Knowledge Model misc Source derogation misc Sharing misc Topic modeling misc Sentiment analysis misc Propensity score matching Did clickbait crack the code on virality? |
authorStr |
Mukherjee, Prithwiraj |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)182223736 |
format |
Article |
dewey-ones |
330 - Economics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0092-0703 |
topic_title |
330 VZ 3,2 ssgn Did clickbait crack the code on virality? Social media Clickbait Persuasion Knowledge Model Source derogation Sharing Topic modeling Sentiment analysis Propensity score matching |
topic |
ddc 330 ssgn 3,2 misc Social media misc Clickbait misc Persuasion Knowledge Model misc Source derogation misc Sharing misc Topic modeling misc Sentiment analysis misc Propensity score matching |
topic_unstemmed |
ddc 330 ssgn 3,2 misc Social media misc Clickbait misc Persuasion Knowledge Model misc Source derogation misc Sharing misc Topic modeling misc Sentiment analysis misc Propensity score matching |
topic_browse |
ddc 330 ssgn 3,2 misc Social media misc Clickbait misc Persuasion Knowledge Model misc Source derogation misc Sharing misc Topic modeling misc Sentiment analysis misc Propensity score matching |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of the Academy of Marketing Science |
hierarchy_parent_id |
182223736 |
dewey-tens |
330 - Economics |
hierarchy_top_title |
Journal of the Academy of Marketing Science |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)182223736 (DE-600)1187865-4 (DE-576)040097765 |
title |
Did clickbait crack the code on virality? |
ctrlnum |
(DE-627)OLC2078427535 (DE-He213)s11747-021-00830-x-p |
title_full |
Did clickbait crack the code on virality? |
author_sort |
Mukherjee, Prithwiraj |
journal |
Journal of the Academy of Marketing Science |
journalStr |
Journal of the Academy of Marketing Science |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
300 - Social sciences |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
482 |
author_browse |
Mukherjee, Prithwiraj Dutta, Souvik De Bruyn, Arnaud |
container_volume |
50 |
class |
330 VZ 3,2 ssgn |
format_se |
Aufsätze |
author-letter |
Mukherjee, Prithwiraj |
doi_str_mv |
10.1007/s11747-021-00830-x |
normlink |
(ORCID)0000-0003-2498-5599 |
normlink_prefix_str_mv |
(orcid)0000-0003-2498-5599 |
dewey-full |
330 |
title_sort |
did clickbait crack the code on virality? |
title_auth |
Did clickbait crack the code on virality? |
abstract |
Abstract Although clickbait is a ubiquitous tactic in digital media, we challenge the popular belief that clickbait systematically leads to enhanced sharing of online content on social media. Using the Persuasion Knowledge Model, we predict that clickbait tactics may be perceived by some readers as a manipulative attempt, leading to source derogation where the publisher may be perceived as less competent and trustworthy. This, in turn, may reduce some readers’ intention to share content. Using a controlled experiment, we confirm that high-emotional headlines are shared more and show evidence that clickbait often leads to inferences of manipulative intent and source derogation. We then use a well-known secondary data set containing 19,386 articles from 27 leading online publishers. We supplement it with Twitter share data, sentiment analysis, topic modeling, and additional control variables. We confirm that, on average, clickbait articles elicit far fewer shares than non-clickbait articles. Our results are stable, with large effect sizes even after controlling for endogenous selection. © Academy of Marketing Science 2021 |
abstractGer |
Abstract Although clickbait is a ubiquitous tactic in digital media, we challenge the popular belief that clickbait systematically leads to enhanced sharing of online content on social media. Using the Persuasion Knowledge Model, we predict that clickbait tactics may be perceived by some readers as a manipulative attempt, leading to source derogation where the publisher may be perceived as less competent and trustworthy. This, in turn, may reduce some readers’ intention to share content. Using a controlled experiment, we confirm that high-emotional headlines are shared more and show evidence that clickbait often leads to inferences of manipulative intent and source derogation. We then use a well-known secondary data set containing 19,386 articles from 27 leading online publishers. We supplement it with Twitter share data, sentiment analysis, topic modeling, and additional control variables. We confirm that, on average, clickbait articles elicit far fewer shares than non-clickbait articles. Our results are stable, with large effect sizes even after controlling for endogenous selection. © Academy of Marketing Science 2021 |
abstract_unstemmed |
Abstract Although clickbait is a ubiquitous tactic in digital media, we challenge the popular belief that clickbait systematically leads to enhanced sharing of online content on social media. Using the Persuasion Knowledge Model, we predict that clickbait tactics may be perceived by some readers as a manipulative attempt, leading to source derogation where the publisher may be perceived as less competent and trustworthy. This, in turn, may reduce some readers’ intention to share content. Using a controlled experiment, we confirm that high-emotional headlines are shared more and show evidence that clickbait often leads to inferences of manipulative intent and source derogation. We then use a well-known secondary data set containing 19,386 articles from 27 leading online publishers. We supplement it with Twitter share data, sentiment analysis, topic modeling, and additional control variables. We confirm that, on average, clickbait articles elicit far fewer shares than non-clickbait articles. Our results are stable, with large effect sizes even after controlling for endogenous selection. © Academy of Marketing Science 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW GBV_ILN_20 GBV_ILN_22 GBV_ILN_24 |
container_issue |
3 |
title_short |
Did clickbait crack the code on virality? |
url |
https://doi.org/10.1007/s11747-021-00830-x |
remote_bool |
false |
author2 |
Dutta, Souvik De Bruyn, Arnaud |
author2Str |
Dutta, Souvik De Bruyn, Arnaud |
ppnlink |
182223736 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11747-021-00830-x |
up_date |
2024-07-03T20:23:17.554Z |
_version_ |
1803590773040480256 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2078427535</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506004807.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11747-021-00830-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2078427535</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11747-021-00830-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">330</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">3,2</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mukherjee, Prithwiraj</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-2498-5599</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Did clickbait crack the code on virality?</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Academy of Marketing Science 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Although clickbait is a ubiquitous tactic in digital media, we challenge the popular belief that clickbait systematically leads to enhanced sharing of online content on social media. Using the Persuasion Knowledge Model, we predict that clickbait tactics may be perceived by some readers as a manipulative attempt, leading to source derogation where the publisher may be perceived as less competent and trustworthy. This, in turn, may reduce some readers’ intention to share content. Using a controlled experiment, we confirm that high-emotional headlines are shared more and show evidence that clickbait often leads to inferences of manipulative intent and source derogation. We then use a well-known secondary data set containing 19,386 articles from 27 leading online publishers. We supplement it with Twitter share data, sentiment analysis, topic modeling, and additional control variables. We confirm that, on average, clickbait articles elicit far fewer shares than non-clickbait articles. Our results are stable, with large effect sizes even after controlling for endogenous selection.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Social media</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Clickbait</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Persuasion Knowledge Model</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Source derogation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sharing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Topic modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sentiment analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Propensity score matching</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dutta, Souvik</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">De Bruyn, Arnaud</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of the Academy of Marketing Science</subfield><subfield code="d">Springer US, 1973</subfield><subfield code="g">50(2022), 3 vom: 29. Jan., Seite 482-502</subfield><subfield code="w">(DE-627)182223736</subfield><subfield code="w">(DE-600)1187865-4</subfield><subfield code="w">(DE-576)040097765</subfield><subfield code="x">0092-0703</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:50</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">day:29</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:482-502</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11747-021-00830-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_20</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_24</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">50</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="b">29</subfield><subfield code="c">01</subfield><subfield code="h">482-502</subfield></datafield></record></collection>
|
score |
7.4008894 |