Fast Anomaly Detection Based on 3D Integral Images
Abstract In this paper, we propose a method to detect abnormal events from videos based on the integral image under Bayesian framework. In our implementation, we consider a regular cube in the videos as one event. Each event is represented as a motion histogram which can be calculated fast from our...
Ausführliche Beschreibung
Autor*in: |
Li, Shifeng [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Neural processing letters - Springer US, 1994, 54(2022), 2 vom: 19. Jan., Seite 1465-1479 |
---|---|
Übergeordnetes Werk: |
volume:54 ; year:2022 ; number:2 ; day:19 ; month:01 ; pages:1465-1479 |
Links: |
---|
DOI / URN: |
10.1007/s11063-021-10691-8 |
---|
Katalog-ID: |
OLC2078441546 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2078441546 | ||
003 | DE-627 | ||
005 | 20230506005113.0 | ||
007 | tu | ||
008 | 221220s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11063-021-10691-8 |2 doi | |
035 | |a (DE-627)OLC2078441546 | ||
035 | |a (DE-He213)s11063-021-10691-8-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 000 |q VZ |
100 | 1 | |a Li, Shifeng |e verfasserin |0 (orcid)0000-0002-5220-5791 |4 aut | |
245 | 1 | 0 | |a Fast Anomaly Detection Based on 3D Integral Images |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 | ||
520 | |a Abstract In this paper, we propose a method to detect abnormal events from videos based on the integral image under Bayesian framework. In our implementation, we consider a regular cube in the videos as one event. Each event is represented as a motion histogram which can be calculated fast from our proposed 3D integral images. Furthermore, we estimate the anomaly probability under the Bayesian framework, where we estimate the prior knowledge from the motion magnitudes and calculate the likelihood based on our maximum histogram templates. Experiments on the public datasets show that our method can effectively and efficiently detect abnormal events in complex scenes. | ||
650 | 4 | |a Anomaly detection | |
650 | 4 | |a Integral image | |
650 | 4 | |a Bayesian framework | |
700 | 1 | |a Cheng, Yan |4 aut | |
700 | 1 | |a Liu, Yunfeng |4 aut | |
700 | 1 | |a Yang, Yuqiang |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Neural processing letters |d Springer US, 1994 |g 54(2022), 2 vom: 19. Jan., Seite 1465-1479 |w (DE-627)198692617 |w (DE-600)1316823-X |w (DE-576)052842762 |x 1370-4621 |7 nnns |
773 | 1 | 8 | |g volume:54 |g year:2022 |g number:2 |g day:19 |g month:01 |g pages:1465-1479 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11063-021-10691-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PSY | ||
912 | |a SSG-OLC-MAT | ||
951 | |a AR | ||
952 | |d 54 |j 2022 |e 2 |b 19 |c 01 |h 1465-1479 |
author_variant |
s l sl y c yc y l yl y y yy |
---|---|
matchkey_str |
article:13704621:2022----::atnmldtcinaeo3i |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s11063-021-10691-8 doi (DE-627)OLC2078441546 (DE-He213)s11063-021-10691-8-p DE-627 ger DE-627 rakwb eng 000 VZ Li, Shifeng verfasserin (orcid)0000-0002-5220-5791 aut Fast Anomaly Detection Based on 3D Integral Images 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract In this paper, we propose a method to detect abnormal events from videos based on the integral image under Bayesian framework. In our implementation, we consider a regular cube in the videos as one event. Each event is represented as a motion histogram which can be calculated fast from our proposed 3D integral images. Furthermore, we estimate the anomaly probability under the Bayesian framework, where we estimate the prior knowledge from the motion magnitudes and calculate the likelihood based on our maximum histogram templates. Experiments on the public datasets show that our method can effectively and efficiently detect abnormal events in complex scenes. Anomaly detection Integral image Bayesian framework Cheng, Yan aut Liu, Yunfeng aut Yang, Yuqiang aut Enthalten in Neural processing letters Springer US, 1994 54(2022), 2 vom: 19. Jan., Seite 1465-1479 (DE-627)198692617 (DE-600)1316823-X (DE-576)052842762 1370-4621 nnns volume:54 year:2022 number:2 day:19 month:01 pages:1465-1479 https://doi.org/10.1007/s11063-021-10691-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PSY SSG-OLC-MAT AR 54 2022 2 19 01 1465-1479 |
spelling |
10.1007/s11063-021-10691-8 doi (DE-627)OLC2078441546 (DE-He213)s11063-021-10691-8-p DE-627 ger DE-627 rakwb eng 000 VZ Li, Shifeng verfasserin (orcid)0000-0002-5220-5791 aut Fast Anomaly Detection Based on 3D Integral Images 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract In this paper, we propose a method to detect abnormal events from videos based on the integral image under Bayesian framework. In our implementation, we consider a regular cube in the videos as one event. Each event is represented as a motion histogram which can be calculated fast from our proposed 3D integral images. Furthermore, we estimate the anomaly probability under the Bayesian framework, where we estimate the prior knowledge from the motion magnitudes and calculate the likelihood based on our maximum histogram templates. Experiments on the public datasets show that our method can effectively and efficiently detect abnormal events in complex scenes. Anomaly detection Integral image Bayesian framework Cheng, Yan aut Liu, Yunfeng aut Yang, Yuqiang aut Enthalten in Neural processing letters Springer US, 1994 54(2022), 2 vom: 19. Jan., Seite 1465-1479 (DE-627)198692617 (DE-600)1316823-X (DE-576)052842762 1370-4621 nnns volume:54 year:2022 number:2 day:19 month:01 pages:1465-1479 https://doi.org/10.1007/s11063-021-10691-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PSY SSG-OLC-MAT AR 54 2022 2 19 01 1465-1479 |
allfields_unstemmed |
10.1007/s11063-021-10691-8 doi (DE-627)OLC2078441546 (DE-He213)s11063-021-10691-8-p DE-627 ger DE-627 rakwb eng 000 VZ Li, Shifeng verfasserin (orcid)0000-0002-5220-5791 aut Fast Anomaly Detection Based on 3D Integral Images 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract In this paper, we propose a method to detect abnormal events from videos based on the integral image under Bayesian framework. In our implementation, we consider a regular cube in the videos as one event. Each event is represented as a motion histogram which can be calculated fast from our proposed 3D integral images. Furthermore, we estimate the anomaly probability under the Bayesian framework, where we estimate the prior knowledge from the motion magnitudes and calculate the likelihood based on our maximum histogram templates. Experiments on the public datasets show that our method can effectively and efficiently detect abnormal events in complex scenes. Anomaly detection Integral image Bayesian framework Cheng, Yan aut Liu, Yunfeng aut Yang, Yuqiang aut Enthalten in Neural processing letters Springer US, 1994 54(2022), 2 vom: 19. Jan., Seite 1465-1479 (DE-627)198692617 (DE-600)1316823-X (DE-576)052842762 1370-4621 nnns volume:54 year:2022 number:2 day:19 month:01 pages:1465-1479 https://doi.org/10.1007/s11063-021-10691-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PSY SSG-OLC-MAT AR 54 2022 2 19 01 1465-1479 |
allfieldsGer |
10.1007/s11063-021-10691-8 doi (DE-627)OLC2078441546 (DE-He213)s11063-021-10691-8-p DE-627 ger DE-627 rakwb eng 000 VZ Li, Shifeng verfasserin (orcid)0000-0002-5220-5791 aut Fast Anomaly Detection Based on 3D Integral Images 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract In this paper, we propose a method to detect abnormal events from videos based on the integral image under Bayesian framework. In our implementation, we consider a regular cube in the videos as one event. Each event is represented as a motion histogram which can be calculated fast from our proposed 3D integral images. Furthermore, we estimate the anomaly probability under the Bayesian framework, where we estimate the prior knowledge from the motion magnitudes and calculate the likelihood based on our maximum histogram templates. Experiments on the public datasets show that our method can effectively and efficiently detect abnormal events in complex scenes. Anomaly detection Integral image Bayesian framework Cheng, Yan aut Liu, Yunfeng aut Yang, Yuqiang aut Enthalten in Neural processing letters Springer US, 1994 54(2022), 2 vom: 19. Jan., Seite 1465-1479 (DE-627)198692617 (DE-600)1316823-X (DE-576)052842762 1370-4621 nnns volume:54 year:2022 number:2 day:19 month:01 pages:1465-1479 https://doi.org/10.1007/s11063-021-10691-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PSY SSG-OLC-MAT AR 54 2022 2 19 01 1465-1479 |
allfieldsSound |
10.1007/s11063-021-10691-8 doi (DE-627)OLC2078441546 (DE-He213)s11063-021-10691-8-p DE-627 ger DE-627 rakwb eng 000 VZ Li, Shifeng verfasserin (orcid)0000-0002-5220-5791 aut Fast Anomaly Detection Based on 3D Integral Images 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract In this paper, we propose a method to detect abnormal events from videos based on the integral image under Bayesian framework. In our implementation, we consider a regular cube in the videos as one event. Each event is represented as a motion histogram which can be calculated fast from our proposed 3D integral images. Furthermore, we estimate the anomaly probability under the Bayesian framework, where we estimate the prior knowledge from the motion magnitudes and calculate the likelihood based on our maximum histogram templates. Experiments on the public datasets show that our method can effectively and efficiently detect abnormal events in complex scenes. Anomaly detection Integral image Bayesian framework Cheng, Yan aut Liu, Yunfeng aut Yang, Yuqiang aut Enthalten in Neural processing letters Springer US, 1994 54(2022), 2 vom: 19. Jan., Seite 1465-1479 (DE-627)198692617 (DE-600)1316823-X (DE-576)052842762 1370-4621 nnns volume:54 year:2022 number:2 day:19 month:01 pages:1465-1479 https://doi.org/10.1007/s11063-021-10691-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PSY SSG-OLC-MAT AR 54 2022 2 19 01 1465-1479 |
language |
English |
source |
Enthalten in Neural processing letters 54(2022), 2 vom: 19. Jan., Seite 1465-1479 volume:54 year:2022 number:2 day:19 month:01 pages:1465-1479 |
sourceStr |
Enthalten in Neural processing letters 54(2022), 2 vom: 19. Jan., Seite 1465-1479 volume:54 year:2022 number:2 day:19 month:01 pages:1465-1479 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Anomaly detection Integral image Bayesian framework |
dewey-raw |
000 |
isfreeaccess_bool |
false |
container_title |
Neural processing letters |
authorswithroles_txt_mv |
Li, Shifeng @@aut@@ Cheng, Yan @@aut@@ Liu, Yunfeng @@aut@@ Yang, Yuqiang @@aut@@ |
publishDateDaySort_date |
2022-01-19T00:00:00Z |
hierarchy_top_id |
198692617 |
dewey-sort |
0 |
id |
OLC2078441546 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2078441546</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506005113.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11063-021-10691-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2078441546</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11063-021-10691-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">000</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Shifeng</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-5220-5791</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fast Anomaly Detection Based on 3D Integral Images</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we propose a method to detect abnormal events from videos based on the integral image under Bayesian framework. In our implementation, we consider a regular cube in the videos as one event. Each event is represented as a motion histogram which can be calculated fast from our proposed 3D integral images. Furthermore, we estimate the anomaly probability under the Bayesian framework, where we estimate the prior knowledge from the motion magnitudes and calculate the likelihood based on our maximum histogram templates. Experiments on the public datasets show that our method can effectively and efficiently detect abnormal events in complex scenes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anomaly detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral image</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian framework</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheng, Yan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yunfeng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Yuqiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Neural processing letters</subfield><subfield code="d">Springer US, 1994</subfield><subfield code="g">54(2022), 2 vom: 19. Jan., Seite 1465-1479</subfield><subfield code="w">(DE-627)198692617</subfield><subfield code="w">(DE-600)1316823-X</subfield><subfield code="w">(DE-576)052842762</subfield><subfield code="x">1370-4621</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:54</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">day:19</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:1465-1479</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11063-021-10691-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PSY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">54</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="b">19</subfield><subfield code="c">01</subfield><subfield code="h">1465-1479</subfield></datafield></record></collection>
|
author |
Li, Shifeng |
spellingShingle |
Li, Shifeng ddc 000 misc Anomaly detection misc Integral image misc Bayesian framework Fast Anomaly Detection Based on 3D Integral Images |
authorStr |
Li, Shifeng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)198692617 |
format |
Article |
dewey-ones |
000 - Computer science, information & general works |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1370-4621 |
topic_title |
000 VZ Fast Anomaly Detection Based on 3D Integral Images Anomaly detection Integral image Bayesian framework |
topic |
ddc 000 misc Anomaly detection misc Integral image misc Bayesian framework |
topic_unstemmed |
ddc 000 misc Anomaly detection misc Integral image misc Bayesian framework |
topic_browse |
ddc 000 misc Anomaly detection misc Integral image misc Bayesian framework |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Neural processing letters |
hierarchy_parent_id |
198692617 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Neural processing letters |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)198692617 (DE-600)1316823-X (DE-576)052842762 |
title |
Fast Anomaly Detection Based on 3D Integral Images |
ctrlnum |
(DE-627)OLC2078441546 (DE-He213)s11063-021-10691-8-p |
title_full |
Fast Anomaly Detection Based on 3D Integral Images |
author_sort |
Li, Shifeng |
journal |
Neural processing letters |
journalStr |
Neural processing letters |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
1465 |
author_browse |
Li, Shifeng Cheng, Yan Liu, Yunfeng Yang, Yuqiang |
container_volume |
54 |
class |
000 VZ |
format_se |
Aufsätze |
author-letter |
Li, Shifeng |
doi_str_mv |
10.1007/s11063-021-10691-8 |
normlink |
(ORCID)0000-0002-5220-5791 |
normlink_prefix_str_mv |
(orcid)0000-0002-5220-5791 |
dewey-full |
000 |
title_sort |
fast anomaly detection based on 3d integral images |
title_auth |
Fast Anomaly Detection Based on 3D Integral Images |
abstract |
Abstract In this paper, we propose a method to detect abnormal events from videos based on the integral image under Bayesian framework. In our implementation, we consider a regular cube in the videos as one event. Each event is represented as a motion histogram which can be calculated fast from our proposed 3D integral images. Furthermore, we estimate the anomaly probability under the Bayesian framework, where we estimate the prior knowledge from the motion magnitudes and calculate the likelihood based on our maximum histogram templates. Experiments on the public datasets show that our method can effectively and efficiently detect abnormal events in complex scenes. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
abstractGer |
Abstract In this paper, we propose a method to detect abnormal events from videos based on the integral image under Bayesian framework. In our implementation, we consider a regular cube in the videos as one event. Each event is represented as a motion histogram which can be calculated fast from our proposed 3D integral images. Furthermore, we estimate the anomaly probability under the Bayesian framework, where we estimate the prior knowledge from the motion magnitudes and calculate the likelihood based on our maximum histogram templates. Experiments on the public datasets show that our method can effectively and efficiently detect abnormal events in complex scenes. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
abstract_unstemmed |
Abstract In this paper, we propose a method to detect abnormal events from videos based on the integral image under Bayesian framework. In our implementation, we consider a regular cube in the videos as one event. Each event is represented as a motion histogram which can be calculated fast from our proposed 3D integral images. Furthermore, we estimate the anomaly probability under the Bayesian framework, where we estimate the prior knowledge from the motion magnitudes and calculate the likelihood based on our maximum histogram templates. Experiments on the public datasets show that our method can effectively and efficiently detect abnormal events in complex scenes. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PSY SSG-OLC-MAT |
container_issue |
2 |
title_short |
Fast Anomaly Detection Based on 3D Integral Images |
url |
https://doi.org/10.1007/s11063-021-10691-8 |
remote_bool |
false |
author2 |
Cheng, Yan Liu, Yunfeng Yang, Yuqiang |
author2Str |
Cheng, Yan Liu, Yunfeng Yang, Yuqiang |
ppnlink |
198692617 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11063-021-10691-8 |
up_date |
2024-07-03T20:27:15.684Z |
_version_ |
1803591022736834560 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2078441546</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506005113.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11063-021-10691-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2078441546</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11063-021-10691-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">000</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Shifeng</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-5220-5791</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Fast Anomaly Detection Based on 3D Integral Images</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we propose a method to detect abnormal events from videos based on the integral image under Bayesian framework. In our implementation, we consider a regular cube in the videos as one event. Each event is represented as a motion histogram which can be calculated fast from our proposed 3D integral images. Furthermore, we estimate the anomaly probability under the Bayesian framework, where we estimate the prior knowledge from the motion magnitudes and calculate the likelihood based on our maximum histogram templates. Experiments on the public datasets show that our method can effectively and efficiently detect abnormal events in complex scenes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anomaly detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Integral image</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bayesian framework</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheng, Yan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yunfeng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Yuqiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Neural processing letters</subfield><subfield code="d">Springer US, 1994</subfield><subfield code="g">54(2022), 2 vom: 19. Jan., Seite 1465-1479</subfield><subfield code="w">(DE-627)198692617</subfield><subfield code="w">(DE-600)1316823-X</subfield><subfield code="w">(DE-576)052842762</subfield><subfield code="x">1370-4621</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:54</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">day:19</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:1465-1479</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11063-021-10691-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PSY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">54</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="b">19</subfield><subfield code="c">01</subfield><subfield code="h">1465-1479</subfield></datafield></record></collection>
|
score |
7.402647 |