Variable neighborhood search for a planning problem with resource constraints in a health simulation center
Abstract In this paper we propose the Variable Neighborhood Search (VNS) algorithm SimULS to solve a planning problem in the Health Simulation Center SimUSanté. This center offers numerous training sessions based on simulation learning for health actors, be they professionals or students. The data a...
Ausführliche Beschreibung
Autor*in: |
Caillard, Simon [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Applied intelligence - Springer US, 1991, 52(2021), 6 vom: 04. Sept., Seite 6245-6261 |
---|---|
Übergeordnetes Werk: |
volume:52 ; year:2021 ; number:6 ; day:04 ; month:09 ; pages:6245-6261 |
Links: |
---|
DOI / URN: |
10.1007/s10489-021-02730-7 |
---|
Katalog-ID: |
OLC2078469629 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2078469629 | ||
003 | DE-627 | ||
005 | 20230506005757.0 | ||
007 | tu | ||
008 | 221220s2021 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10489-021-02730-7 |2 doi | |
035 | |a (DE-627)OLC2078469629 | ||
035 | |a (DE-He213)s10489-021-02730-7-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
100 | 1 | |a Caillard, Simon |e verfasserin |0 (orcid)0000-0002-9175-171X |4 aut | |
245 | 1 | 0 | |a Variable neighborhood search for a planning problem with resource constraints in a health simulation center |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 | ||
520 | |a Abstract In this paper we propose the Variable Neighborhood Search (VNS) algorithm SimULS to solve a planning problem in the Health Simulation Center SimUSanté. This center offers numerous training sessions based on simulation learning for health actors, be they professionals or students. The data and constraints of the SimUSanté problem, close to the academic Curriculum-Based Courses Timetabling (CB-CTT) Problem, are presented in detail using a 0-1 linear program modelization. A dedicated greedy algorithm SimUG is used to generate a relevant initial solution in the VNS algorithm. SimULS combines different neighborhood functions stemmed from operators saturator, intra, extra and extra +. A diversification function is applied when the search becomes trapped by a local optimum. First, SimULS was compared to the open source KHE solver by relaxing the precedence constraints. Next, SimULS was tested on all the generated SimUSanté instances. Both experiments show that the strength of SimULS is to schedule all the activities, even for the largest instances, without violating any hard constraints. In addition, the solutions given by SimULS are close to the optimum with a gap less than 7.33%. | ||
650 | 4 | |a Healthcare training | |
650 | 4 | |a Timetabling | |
650 | 4 | |a Optimization | |
650 | 4 | |a Scheduling | |
700 | 1 | |a Devendeville, Laure Brisoux |4 aut | |
700 | 1 | |a Lucet, Corinne |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied intelligence |d Springer US, 1991 |g 52(2021), 6 vom: 04. Sept., Seite 6245-6261 |w (DE-627)130990515 |w (DE-600)1080229-0 |w (DE-576)029154286 |x 0924-669X |7 nnns |
773 | 1 | 8 | |g volume:52 |g year:2021 |g number:6 |g day:04 |g month:09 |g pages:6245-6261 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10489-021-02730-7 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
951 | |a AR | ||
952 | |d 52 |j 2021 |e 6 |b 04 |c 09 |h 6245-6261 |
author_variant |
s c sc l b d lb lbd c l cl |
---|---|
matchkey_str |
article:0924669X:2021----::aibeegbroderhoalnigrbewtrsuccntans |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s10489-021-02730-7 doi (DE-627)OLC2078469629 (DE-He213)s10489-021-02730-7-p DE-627 ger DE-627 rakwb eng 004 VZ Caillard, Simon verfasserin (orcid)0000-0002-9175-171X aut Variable neighborhood search for a planning problem with resource constraints in a health simulation center 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract In this paper we propose the Variable Neighborhood Search (VNS) algorithm SimULS to solve a planning problem in the Health Simulation Center SimUSanté. This center offers numerous training sessions based on simulation learning for health actors, be they professionals or students. The data and constraints of the SimUSanté problem, close to the academic Curriculum-Based Courses Timetabling (CB-CTT) Problem, are presented in detail using a 0-1 linear program modelization. A dedicated greedy algorithm SimUG is used to generate a relevant initial solution in the VNS algorithm. SimULS combines different neighborhood functions stemmed from operators saturator, intra, extra and extra +. A diversification function is applied when the search becomes trapped by a local optimum. First, SimULS was compared to the open source KHE solver by relaxing the precedence constraints. Next, SimULS was tested on all the generated SimUSanté instances. Both experiments show that the strength of SimULS is to schedule all the activities, even for the largest instances, without violating any hard constraints. In addition, the solutions given by SimULS are close to the optimum with a gap less than 7.33%. Healthcare training Timetabling Optimization Scheduling Devendeville, Laure Brisoux aut Lucet, Corinne aut Enthalten in Applied intelligence Springer US, 1991 52(2021), 6 vom: 04. Sept., Seite 6245-6261 (DE-627)130990515 (DE-600)1080229-0 (DE-576)029154286 0924-669X nnns volume:52 year:2021 number:6 day:04 month:09 pages:6245-6261 https://doi.org/10.1007/s10489-021-02730-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT AR 52 2021 6 04 09 6245-6261 |
spelling |
10.1007/s10489-021-02730-7 doi (DE-627)OLC2078469629 (DE-He213)s10489-021-02730-7-p DE-627 ger DE-627 rakwb eng 004 VZ Caillard, Simon verfasserin (orcid)0000-0002-9175-171X aut Variable neighborhood search for a planning problem with resource constraints in a health simulation center 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract In this paper we propose the Variable Neighborhood Search (VNS) algorithm SimULS to solve a planning problem in the Health Simulation Center SimUSanté. This center offers numerous training sessions based on simulation learning for health actors, be they professionals or students. The data and constraints of the SimUSanté problem, close to the academic Curriculum-Based Courses Timetabling (CB-CTT) Problem, are presented in detail using a 0-1 linear program modelization. A dedicated greedy algorithm SimUG is used to generate a relevant initial solution in the VNS algorithm. SimULS combines different neighborhood functions stemmed from operators saturator, intra, extra and extra +. A diversification function is applied when the search becomes trapped by a local optimum. First, SimULS was compared to the open source KHE solver by relaxing the precedence constraints. Next, SimULS was tested on all the generated SimUSanté instances. Both experiments show that the strength of SimULS is to schedule all the activities, even for the largest instances, without violating any hard constraints. In addition, the solutions given by SimULS are close to the optimum with a gap less than 7.33%. Healthcare training Timetabling Optimization Scheduling Devendeville, Laure Brisoux aut Lucet, Corinne aut Enthalten in Applied intelligence Springer US, 1991 52(2021), 6 vom: 04. Sept., Seite 6245-6261 (DE-627)130990515 (DE-600)1080229-0 (DE-576)029154286 0924-669X nnns volume:52 year:2021 number:6 day:04 month:09 pages:6245-6261 https://doi.org/10.1007/s10489-021-02730-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT AR 52 2021 6 04 09 6245-6261 |
allfields_unstemmed |
10.1007/s10489-021-02730-7 doi (DE-627)OLC2078469629 (DE-He213)s10489-021-02730-7-p DE-627 ger DE-627 rakwb eng 004 VZ Caillard, Simon verfasserin (orcid)0000-0002-9175-171X aut Variable neighborhood search for a planning problem with resource constraints in a health simulation center 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract In this paper we propose the Variable Neighborhood Search (VNS) algorithm SimULS to solve a planning problem in the Health Simulation Center SimUSanté. This center offers numerous training sessions based on simulation learning for health actors, be they professionals or students. The data and constraints of the SimUSanté problem, close to the academic Curriculum-Based Courses Timetabling (CB-CTT) Problem, are presented in detail using a 0-1 linear program modelization. A dedicated greedy algorithm SimUG is used to generate a relevant initial solution in the VNS algorithm. SimULS combines different neighborhood functions stemmed from operators saturator, intra, extra and extra +. A diversification function is applied when the search becomes trapped by a local optimum. First, SimULS was compared to the open source KHE solver by relaxing the precedence constraints. Next, SimULS was tested on all the generated SimUSanté instances. Both experiments show that the strength of SimULS is to schedule all the activities, even for the largest instances, without violating any hard constraints. In addition, the solutions given by SimULS are close to the optimum with a gap less than 7.33%. Healthcare training Timetabling Optimization Scheduling Devendeville, Laure Brisoux aut Lucet, Corinne aut Enthalten in Applied intelligence Springer US, 1991 52(2021), 6 vom: 04. Sept., Seite 6245-6261 (DE-627)130990515 (DE-600)1080229-0 (DE-576)029154286 0924-669X nnns volume:52 year:2021 number:6 day:04 month:09 pages:6245-6261 https://doi.org/10.1007/s10489-021-02730-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT AR 52 2021 6 04 09 6245-6261 |
allfieldsGer |
10.1007/s10489-021-02730-7 doi (DE-627)OLC2078469629 (DE-He213)s10489-021-02730-7-p DE-627 ger DE-627 rakwb eng 004 VZ Caillard, Simon verfasserin (orcid)0000-0002-9175-171X aut Variable neighborhood search for a planning problem with resource constraints in a health simulation center 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract In this paper we propose the Variable Neighborhood Search (VNS) algorithm SimULS to solve a planning problem in the Health Simulation Center SimUSanté. This center offers numerous training sessions based on simulation learning for health actors, be they professionals or students. The data and constraints of the SimUSanté problem, close to the academic Curriculum-Based Courses Timetabling (CB-CTT) Problem, are presented in detail using a 0-1 linear program modelization. A dedicated greedy algorithm SimUG is used to generate a relevant initial solution in the VNS algorithm. SimULS combines different neighborhood functions stemmed from operators saturator, intra, extra and extra +. A diversification function is applied when the search becomes trapped by a local optimum. First, SimULS was compared to the open source KHE solver by relaxing the precedence constraints. Next, SimULS was tested on all the generated SimUSanté instances. Both experiments show that the strength of SimULS is to schedule all the activities, even for the largest instances, without violating any hard constraints. In addition, the solutions given by SimULS are close to the optimum with a gap less than 7.33%. Healthcare training Timetabling Optimization Scheduling Devendeville, Laure Brisoux aut Lucet, Corinne aut Enthalten in Applied intelligence Springer US, 1991 52(2021), 6 vom: 04. Sept., Seite 6245-6261 (DE-627)130990515 (DE-600)1080229-0 (DE-576)029154286 0924-669X nnns volume:52 year:2021 number:6 day:04 month:09 pages:6245-6261 https://doi.org/10.1007/s10489-021-02730-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT AR 52 2021 6 04 09 6245-6261 |
allfieldsSound |
10.1007/s10489-021-02730-7 doi (DE-627)OLC2078469629 (DE-He213)s10489-021-02730-7-p DE-627 ger DE-627 rakwb eng 004 VZ Caillard, Simon verfasserin (orcid)0000-0002-9175-171X aut Variable neighborhood search for a planning problem with resource constraints in a health simulation center 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract In this paper we propose the Variable Neighborhood Search (VNS) algorithm SimULS to solve a planning problem in the Health Simulation Center SimUSanté. This center offers numerous training sessions based on simulation learning for health actors, be they professionals or students. The data and constraints of the SimUSanté problem, close to the academic Curriculum-Based Courses Timetabling (CB-CTT) Problem, are presented in detail using a 0-1 linear program modelization. A dedicated greedy algorithm SimUG is used to generate a relevant initial solution in the VNS algorithm. SimULS combines different neighborhood functions stemmed from operators saturator, intra, extra and extra +. A diversification function is applied when the search becomes trapped by a local optimum. First, SimULS was compared to the open source KHE solver by relaxing the precedence constraints. Next, SimULS was tested on all the generated SimUSanté instances. Both experiments show that the strength of SimULS is to schedule all the activities, even for the largest instances, without violating any hard constraints. In addition, the solutions given by SimULS are close to the optimum with a gap less than 7.33%. Healthcare training Timetabling Optimization Scheduling Devendeville, Laure Brisoux aut Lucet, Corinne aut Enthalten in Applied intelligence Springer US, 1991 52(2021), 6 vom: 04. Sept., Seite 6245-6261 (DE-627)130990515 (DE-600)1080229-0 (DE-576)029154286 0924-669X nnns volume:52 year:2021 number:6 day:04 month:09 pages:6245-6261 https://doi.org/10.1007/s10489-021-02730-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT AR 52 2021 6 04 09 6245-6261 |
language |
English |
source |
Enthalten in Applied intelligence 52(2021), 6 vom: 04. Sept., Seite 6245-6261 volume:52 year:2021 number:6 day:04 month:09 pages:6245-6261 |
sourceStr |
Enthalten in Applied intelligence 52(2021), 6 vom: 04. Sept., Seite 6245-6261 volume:52 year:2021 number:6 day:04 month:09 pages:6245-6261 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Healthcare training Timetabling Optimization Scheduling |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Applied intelligence |
authorswithroles_txt_mv |
Caillard, Simon @@aut@@ Devendeville, Laure Brisoux @@aut@@ Lucet, Corinne @@aut@@ |
publishDateDaySort_date |
2021-09-04T00:00:00Z |
hierarchy_top_id |
130990515 |
dewey-sort |
14 |
id |
OLC2078469629 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2078469629</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506005757.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10489-021-02730-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2078469629</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10489-021-02730-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Caillard, Simon</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9175-171X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Variable neighborhood search for a planning problem with resource constraints in a health simulation center</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper we propose the Variable Neighborhood Search (VNS) algorithm SimULS to solve a planning problem in the Health Simulation Center SimUSanté. This center offers numerous training sessions based on simulation learning for health actors, be they professionals or students. The data and constraints of the SimUSanté problem, close to the academic Curriculum-Based Courses Timetabling (CB-CTT) Problem, are presented in detail using a 0-1 linear program modelization. A dedicated greedy algorithm SimUG is used to generate a relevant initial solution in the VNS algorithm. SimULS combines different neighborhood functions stemmed from operators saturator, intra, extra and extra +. A diversification function is applied when the search becomes trapped by a local optimum. First, SimULS was compared to the open source KHE solver by relaxing the precedence constraints. Next, SimULS was tested on all the generated SimUSanté instances. Both experiments show that the strength of SimULS is to schedule all the activities, even for the largest instances, without violating any hard constraints. In addition, the solutions given by SimULS are close to the optimum with a gap less than 7.33%.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Healthcare training</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Timetabling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scheduling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Devendeville, Laure Brisoux</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lucet, Corinne</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied intelligence</subfield><subfield code="d">Springer US, 1991</subfield><subfield code="g">52(2021), 6 vom: 04. Sept., Seite 6245-6261</subfield><subfield code="w">(DE-627)130990515</subfield><subfield code="w">(DE-600)1080229-0</subfield><subfield code="w">(DE-576)029154286</subfield><subfield code="x">0924-669X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:52</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:6</subfield><subfield code="g">day:04</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:6245-6261</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10489-021-02730-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">52</subfield><subfield code="j">2021</subfield><subfield code="e">6</subfield><subfield code="b">04</subfield><subfield code="c">09</subfield><subfield code="h">6245-6261</subfield></datafield></record></collection>
|
author |
Caillard, Simon |
spellingShingle |
Caillard, Simon ddc 004 misc Healthcare training misc Timetabling misc Optimization misc Scheduling Variable neighborhood search for a planning problem with resource constraints in a health simulation center |
authorStr |
Caillard, Simon |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130990515 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0924-669X |
topic_title |
004 VZ Variable neighborhood search for a planning problem with resource constraints in a health simulation center Healthcare training Timetabling Optimization Scheduling |
topic |
ddc 004 misc Healthcare training misc Timetabling misc Optimization misc Scheduling |
topic_unstemmed |
ddc 004 misc Healthcare training misc Timetabling misc Optimization misc Scheduling |
topic_browse |
ddc 004 misc Healthcare training misc Timetabling misc Optimization misc Scheduling |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Applied intelligence |
hierarchy_parent_id |
130990515 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Applied intelligence |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130990515 (DE-600)1080229-0 (DE-576)029154286 |
title |
Variable neighborhood search for a planning problem with resource constraints in a health simulation center |
ctrlnum |
(DE-627)OLC2078469629 (DE-He213)s10489-021-02730-7-p |
title_full |
Variable neighborhood search for a planning problem with resource constraints in a health simulation center |
author_sort |
Caillard, Simon |
journal |
Applied intelligence |
journalStr |
Applied intelligence |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
6245 |
author_browse |
Caillard, Simon Devendeville, Laure Brisoux Lucet, Corinne |
container_volume |
52 |
class |
004 VZ |
format_se |
Aufsätze |
author-letter |
Caillard, Simon |
doi_str_mv |
10.1007/s10489-021-02730-7 |
normlink |
(ORCID)0000-0002-9175-171X |
normlink_prefix_str_mv |
(orcid)0000-0002-9175-171X |
dewey-full |
004 |
title_sort |
variable neighborhood search for a planning problem with resource constraints in a health simulation center |
title_auth |
Variable neighborhood search for a planning problem with resource constraints in a health simulation center |
abstract |
Abstract In this paper we propose the Variable Neighborhood Search (VNS) algorithm SimULS to solve a planning problem in the Health Simulation Center SimUSanté. This center offers numerous training sessions based on simulation learning for health actors, be they professionals or students. The data and constraints of the SimUSanté problem, close to the academic Curriculum-Based Courses Timetabling (CB-CTT) Problem, are presented in detail using a 0-1 linear program modelization. A dedicated greedy algorithm SimUG is used to generate a relevant initial solution in the VNS algorithm. SimULS combines different neighborhood functions stemmed from operators saturator, intra, extra and extra +. A diversification function is applied when the search becomes trapped by a local optimum. First, SimULS was compared to the open source KHE solver by relaxing the precedence constraints. Next, SimULS was tested on all the generated SimUSanté instances. Both experiments show that the strength of SimULS is to schedule all the activities, even for the largest instances, without violating any hard constraints. In addition, the solutions given by SimULS are close to the optimum with a gap less than 7.33%. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
abstractGer |
Abstract In this paper we propose the Variable Neighborhood Search (VNS) algorithm SimULS to solve a planning problem in the Health Simulation Center SimUSanté. This center offers numerous training sessions based on simulation learning for health actors, be they professionals or students. The data and constraints of the SimUSanté problem, close to the academic Curriculum-Based Courses Timetabling (CB-CTT) Problem, are presented in detail using a 0-1 linear program modelization. A dedicated greedy algorithm SimUG is used to generate a relevant initial solution in the VNS algorithm. SimULS combines different neighborhood functions stemmed from operators saturator, intra, extra and extra +. A diversification function is applied when the search becomes trapped by a local optimum. First, SimULS was compared to the open source KHE solver by relaxing the precedence constraints. Next, SimULS was tested on all the generated SimUSanté instances. Both experiments show that the strength of SimULS is to schedule all the activities, even for the largest instances, without violating any hard constraints. In addition, the solutions given by SimULS are close to the optimum with a gap less than 7.33%. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
abstract_unstemmed |
Abstract In this paper we propose the Variable Neighborhood Search (VNS) algorithm SimULS to solve a planning problem in the Health Simulation Center SimUSanté. This center offers numerous training sessions based on simulation learning for health actors, be they professionals or students. The data and constraints of the SimUSanté problem, close to the academic Curriculum-Based Courses Timetabling (CB-CTT) Problem, are presented in detail using a 0-1 linear program modelization. A dedicated greedy algorithm SimUG is used to generate a relevant initial solution in the VNS algorithm. SimULS combines different neighborhood functions stemmed from operators saturator, intra, extra and extra +. A diversification function is applied when the search becomes trapped by a local optimum. First, SimULS was compared to the open source KHE solver by relaxing the precedence constraints. Next, SimULS was tested on all the generated SimUSanté instances. Both experiments show that the strength of SimULS is to schedule all the activities, even for the largest instances, without violating any hard constraints. In addition, the solutions given by SimULS are close to the optimum with a gap less than 7.33%. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT |
container_issue |
6 |
title_short |
Variable neighborhood search for a planning problem with resource constraints in a health simulation center |
url |
https://doi.org/10.1007/s10489-021-02730-7 |
remote_bool |
false |
author2 |
Devendeville, Laure Brisoux Lucet, Corinne |
author2Str |
Devendeville, Laure Brisoux Lucet, Corinne |
ppnlink |
130990515 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10489-021-02730-7 |
up_date |
2024-07-03T20:35:52.159Z |
_version_ |
1803591564302221312 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2078469629</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506005757.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10489-021-02730-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2078469629</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10489-021-02730-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Caillard, Simon</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-9175-171X</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Variable neighborhood search for a planning problem with resource constraints in a health simulation center</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper we propose the Variable Neighborhood Search (VNS) algorithm SimULS to solve a planning problem in the Health Simulation Center SimUSanté. This center offers numerous training sessions based on simulation learning for health actors, be they professionals or students. The data and constraints of the SimUSanté problem, close to the academic Curriculum-Based Courses Timetabling (CB-CTT) Problem, are presented in detail using a 0-1 linear program modelization. A dedicated greedy algorithm SimUG is used to generate a relevant initial solution in the VNS algorithm. SimULS combines different neighborhood functions stemmed from operators saturator, intra, extra and extra +. A diversification function is applied when the search becomes trapped by a local optimum. First, SimULS was compared to the open source KHE solver by relaxing the precedence constraints. Next, SimULS was tested on all the generated SimUSanté instances. Both experiments show that the strength of SimULS is to schedule all the activities, even for the largest instances, without violating any hard constraints. In addition, the solutions given by SimULS are close to the optimum with a gap less than 7.33%.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Healthcare training</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Timetabling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Scheduling</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Devendeville, Laure Brisoux</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lucet, Corinne</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied intelligence</subfield><subfield code="d">Springer US, 1991</subfield><subfield code="g">52(2021), 6 vom: 04. Sept., Seite 6245-6261</subfield><subfield code="w">(DE-627)130990515</subfield><subfield code="w">(DE-600)1080229-0</subfield><subfield code="w">(DE-576)029154286</subfield><subfield code="x">0924-669X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:52</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:6</subfield><subfield code="g">day:04</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:6245-6261</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10489-021-02730-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">52</subfield><subfield code="j">2021</subfield><subfield code="e">6</subfield><subfield code="b">04</subfield><subfield code="c">09</subfield><subfield code="h">6245-6261</subfield></datafield></record></collection>
|
score |
7.401696 |