Efficient and Robust Background Modeling with Dynamic Mode Decomposition
Abstract A large number of modern video background modeling algorithms deal with computational costly minimization problems that often need parameter adjustments. While in most cases spatial and temporal constraints are added artificially to the minimization process, our approach is to exploit Dynam...
Ausführliche Beschreibung
Autor*in: |
Krake, Tim [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of mathematical imaging and vision - Springer US, 1992, 64(2022), 4 vom: 24. Feb., Seite 364-378 |
---|---|
Übergeordnetes Werk: |
volume:64 ; year:2022 ; number:4 ; day:24 ; month:02 ; pages:364-378 |
Links: |
---|
DOI / URN: |
10.1007/s10851-022-01068-0 |
---|
Katalog-ID: |
OLC2078509205 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2078509205 | ||
003 | DE-627 | ||
005 | 20230506010936.0 | ||
007 | tu | ||
008 | 221220s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10851-022-01068-0 |2 doi | |
035 | |a (DE-627)OLC2078509205 | ||
035 | |a (DE-He213)s10851-022-01068-0-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 31.00 |2 bkl | ||
084 | |a 54.00 |2 bkl | ||
100 | 1 | |a Krake, Tim |e verfasserin |4 aut | |
245 | 1 | 0 | |a Efficient and Robust Background Modeling with Dynamic Mode Decomposition |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a Abstract A large number of modern video background modeling algorithms deal with computational costly minimization problems that often need parameter adjustments. While in most cases spatial and temporal constraints are added artificially to the minimization process, our approach is to exploit Dynamic Mode Decomposition (DMD), a spectral decomposition technique that naturally extracts spatio-temporal patterns from data. Applied to video data, DMD can compute background models. However, the original DMD algorithm for background modeling is neither efficient nor robust. In this paper, we present an equivalent reformulation with constraints leading to a more suitable decomposition into fore- and background. Due to the reformulation, which uses sparse and low-dimensional structures, an efficient and robust algorithm is derived that computes accurate background models. Moreover, we show how our approach can be extended to RGB data, data with periodic parts, and streaming data enabling a versatile use. | ||
650 | 4 | |a Dynamic mode decomposition | |
650 | 4 | |a Spectral decomposition | |
650 | 4 | |a Background modeling | |
650 | 4 | |a Foreground detection | |
700 | 1 | |a Bruhn, Andrés |4 aut | |
700 | 1 | |a Eberhardt, Bernhard |4 aut | |
700 | 1 | |a Weiskopf, Daniel |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of mathematical imaging and vision |d Springer US, 1992 |g 64(2022), 4 vom: 24. Feb., Seite 364-378 |w (DE-627)13114278X |w (DE-600)1127403-7 |w (DE-576)038688964 |x 0924-9907 |7 nnns |
773 | 1 | 8 | |g volume:64 |g year:2022 |g number:4 |g day:24 |g month:02 |g pages:364-378 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10851-022-01068-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
936 | b | k | |a 31.00 |q VZ |
936 | b | k | |a 54.00 |q VZ |
951 | |a AR | ||
952 | |d 64 |j 2022 |e 4 |b 24 |c 02 |h 364-378 |
author_variant |
t k tk a b ab b e be d w dw |
---|---|
matchkey_str |
article:09249907:2022----::fiinadoutakrudoeigihyaim |
hierarchy_sort_str |
2022 |
bklnumber |
31.00 54.00 |
publishDate |
2022 |
allfields |
10.1007/s10851-022-01068-0 doi (DE-627)OLC2078509205 (DE-He213)s10851-022-01068-0-p DE-627 ger DE-627 rakwb eng 510 VZ 31.00 bkl 54.00 bkl Krake, Tim verfasserin aut Efficient and Robust Background Modeling with Dynamic Mode Decomposition 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2022 Abstract A large number of modern video background modeling algorithms deal with computational costly minimization problems that often need parameter adjustments. While in most cases spatial and temporal constraints are added artificially to the minimization process, our approach is to exploit Dynamic Mode Decomposition (DMD), a spectral decomposition technique that naturally extracts spatio-temporal patterns from data. Applied to video data, DMD can compute background models. However, the original DMD algorithm for background modeling is neither efficient nor robust. In this paper, we present an equivalent reformulation with constraints leading to a more suitable decomposition into fore- and background. Due to the reformulation, which uses sparse and low-dimensional structures, an efficient and robust algorithm is derived that computes accurate background models. Moreover, we show how our approach can be extended to RGB data, data with periodic parts, and streaming data enabling a versatile use. Dynamic mode decomposition Spectral decomposition Background modeling Foreground detection Bruhn, Andrés aut Eberhardt, Bernhard aut Weiskopf, Daniel aut Enthalten in Journal of mathematical imaging and vision Springer US, 1992 64(2022), 4 vom: 24. Feb., Seite 364-378 (DE-627)13114278X (DE-600)1127403-7 (DE-576)038688964 0924-9907 nnns volume:64 year:2022 number:4 day:24 month:02 pages:364-378 https://doi.org/10.1007/s10851-022-01068-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT 31.00 VZ 54.00 VZ AR 64 2022 4 24 02 364-378 |
spelling |
10.1007/s10851-022-01068-0 doi (DE-627)OLC2078509205 (DE-He213)s10851-022-01068-0-p DE-627 ger DE-627 rakwb eng 510 VZ 31.00 bkl 54.00 bkl Krake, Tim verfasserin aut Efficient and Robust Background Modeling with Dynamic Mode Decomposition 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2022 Abstract A large number of modern video background modeling algorithms deal with computational costly minimization problems that often need parameter adjustments. While in most cases spatial and temporal constraints are added artificially to the minimization process, our approach is to exploit Dynamic Mode Decomposition (DMD), a spectral decomposition technique that naturally extracts spatio-temporal patterns from data. Applied to video data, DMD can compute background models. However, the original DMD algorithm for background modeling is neither efficient nor robust. In this paper, we present an equivalent reformulation with constraints leading to a more suitable decomposition into fore- and background. Due to the reformulation, which uses sparse and low-dimensional structures, an efficient and robust algorithm is derived that computes accurate background models. Moreover, we show how our approach can be extended to RGB data, data with periodic parts, and streaming data enabling a versatile use. Dynamic mode decomposition Spectral decomposition Background modeling Foreground detection Bruhn, Andrés aut Eberhardt, Bernhard aut Weiskopf, Daniel aut Enthalten in Journal of mathematical imaging and vision Springer US, 1992 64(2022), 4 vom: 24. Feb., Seite 364-378 (DE-627)13114278X (DE-600)1127403-7 (DE-576)038688964 0924-9907 nnns volume:64 year:2022 number:4 day:24 month:02 pages:364-378 https://doi.org/10.1007/s10851-022-01068-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT 31.00 VZ 54.00 VZ AR 64 2022 4 24 02 364-378 |
allfields_unstemmed |
10.1007/s10851-022-01068-0 doi (DE-627)OLC2078509205 (DE-He213)s10851-022-01068-0-p DE-627 ger DE-627 rakwb eng 510 VZ 31.00 bkl 54.00 bkl Krake, Tim verfasserin aut Efficient and Robust Background Modeling with Dynamic Mode Decomposition 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2022 Abstract A large number of modern video background modeling algorithms deal with computational costly minimization problems that often need parameter adjustments. While in most cases spatial and temporal constraints are added artificially to the minimization process, our approach is to exploit Dynamic Mode Decomposition (DMD), a spectral decomposition technique that naturally extracts spatio-temporal patterns from data. Applied to video data, DMD can compute background models. However, the original DMD algorithm for background modeling is neither efficient nor robust. In this paper, we present an equivalent reformulation with constraints leading to a more suitable decomposition into fore- and background. Due to the reformulation, which uses sparse and low-dimensional structures, an efficient and robust algorithm is derived that computes accurate background models. Moreover, we show how our approach can be extended to RGB data, data with periodic parts, and streaming data enabling a versatile use. Dynamic mode decomposition Spectral decomposition Background modeling Foreground detection Bruhn, Andrés aut Eberhardt, Bernhard aut Weiskopf, Daniel aut Enthalten in Journal of mathematical imaging and vision Springer US, 1992 64(2022), 4 vom: 24. Feb., Seite 364-378 (DE-627)13114278X (DE-600)1127403-7 (DE-576)038688964 0924-9907 nnns volume:64 year:2022 number:4 day:24 month:02 pages:364-378 https://doi.org/10.1007/s10851-022-01068-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT 31.00 VZ 54.00 VZ AR 64 2022 4 24 02 364-378 |
allfieldsGer |
10.1007/s10851-022-01068-0 doi (DE-627)OLC2078509205 (DE-He213)s10851-022-01068-0-p DE-627 ger DE-627 rakwb eng 510 VZ 31.00 bkl 54.00 bkl Krake, Tim verfasserin aut Efficient and Robust Background Modeling with Dynamic Mode Decomposition 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2022 Abstract A large number of modern video background modeling algorithms deal with computational costly minimization problems that often need parameter adjustments. While in most cases spatial and temporal constraints are added artificially to the minimization process, our approach is to exploit Dynamic Mode Decomposition (DMD), a spectral decomposition technique that naturally extracts spatio-temporal patterns from data. Applied to video data, DMD can compute background models. However, the original DMD algorithm for background modeling is neither efficient nor robust. In this paper, we present an equivalent reformulation with constraints leading to a more suitable decomposition into fore- and background. Due to the reformulation, which uses sparse and low-dimensional structures, an efficient and robust algorithm is derived that computes accurate background models. Moreover, we show how our approach can be extended to RGB data, data with periodic parts, and streaming data enabling a versatile use. Dynamic mode decomposition Spectral decomposition Background modeling Foreground detection Bruhn, Andrés aut Eberhardt, Bernhard aut Weiskopf, Daniel aut Enthalten in Journal of mathematical imaging and vision Springer US, 1992 64(2022), 4 vom: 24. Feb., Seite 364-378 (DE-627)13114278X (DE-600)1127403-7 (DE-576)038688964 0924-9907 nnns volume:64 year:2022 number:4 day:24 month:02 pages:364-378 https://doi.org/10.1007/s10851-022-01068-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT 31.00 VZ 54.00 VZ AR 64 2022 4 24 02 364-378 |
allfieldsSound |
10.1007/s10851-022-01068-0 doi (DE-627)OLC2078509205 (DE-He213)s10851-022-01068-0-p DE-627 ger DE-627 rakwb eng 510 VZ 31.00 bkl 54.00 bkl Krake, Tim verfasserin aut Efficient and Robust Background Modeling with Dynamic Mode Decomposition 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2022 Abstract A large number of modern video background modeling algorithms deal with computational costly minimization problems that often need parameter adjustments. While in most cases spatial and temporal constraints are added artificially to the minimization process, our approach is to exploit Dynamic Mode Decomposition (DMD), a spectral decomposition technique that naturally extracts spatio-temporal patterns from data. Applied to video data, DMD can compute background models. However, the original DMD algorithm for background modeling is neither efficient nor robust. In this paper, we present an equivalent reformulation with constraints leading to a more suitable decomposition into fore- and background. Due to the reformulation, which uses sparse and low-dimensional structures, an efficient and robust algorithm is derived that computes accurate background models. Moreover, we show how our approach can be extended to RGB data, data with periodic parts, and streaming data enabling a versatile use. Dynamic mode decomposition Spectral decomposition Background modeling Foreground detection Bruhn, Andrés aut Eberhardt, Bernhard aut Weiskopf, Daniel aut Enthalten in Journal of mathematical imaging and vision Springer US, 1992 64(2022), 4 vom: 24. Feb., Seite 364-378 (DE-627)13114278X (DE-600)1127403-7 (DE-576)038688964 0924-9907 nnns volume:64 year:2022 number:4 day:24 month:02 pages:364-378 https://doi.org/10.1007/s10851-022-01068-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT 31.00 VZ 54.00 VZ AR 64 2022 4 24 02 364-378 |
language |
English |
source |
Enthalten in Journal of mathematical imaging and vision 64(2022), 4 vom: 24. Feb., Seite 364-378 volume:64 year:2022 number:4 day:24 month:02 pages:364-378 |
sourceStr |
Enthalten in Journal of mathematical imaging and vision 64(2022), 4 vom: 24. Feb., Seite 364-378 volume:64 year:2022 number:4 day:24 month:02 pages:364-378 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Dynamic mode decomposition Spectral decomposition Background modeling Foreground detection |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of mathematical imaging and vision |
authorswithroles_txt_mv |
Krake, Tim @@aut@@ Bruhn, Andrés @@aut@@ Eberhardt, Bernhard @@aut@@ Weiskopf, Daniel @@aut@@ |
publishDateDaySort_date |
2022-02-24T00:00:00Z |
hierarchy_top_id |
13114278X |
dewey-sort |
3510 |
id |
OLC2078509205 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2078509205</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506010936.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10851-022-01068-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2078509205</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10851-022-01068-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Krake, Tim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Efficient and Robust Background Modeling with Dynamic Mode Decomposition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A large number of modern video background modeling algorithms deal with computational costly minimization problems that often need parameter adjustments. While in most cases spatial and temporal constraints are added artificially to the minimization process, our approach is to exploit Dynamic Mode Decomposition (DMD), a spectral decomposition technique that naturally extracts spatio-temporal patterns from data. Applied to video data, DMD can compute background models. However, the original DMD algorithm for background modeling is neither efficient nor robust. In this paper, we present an equivalent reformulation with constraints leading to a more suitable decomposition into fore- and background. Due to the reformulation, which uses sparse and low-dimensional structures, an efficient and robust algorithm is derived that computes accurate background models. Moreover, we show how our approach can be extended to RGB data, data with periodic parts, and streaming data enabling a versatile use.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic mode decomposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectral decomposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Background modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Foreground detection</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bruhn, Andrés</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eberhardt, Bernhard</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weiskopf, Daniel</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of mathematical imaging and vision</subfield><subfield code="d">Springer US, 1992</subfield><subfield code="g">64(2022), 4 vom: 24. Feb., Seite 364-378</subfield><subfield code="w">(DE-627)13114278X</subfield><subfield code="w">(DE-600)1127403-7</subfield><subfield code="w">(DE-576)038688964</subfield><subfield code="x">0924-9907</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:64</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4</subfield><subfield code="g">day:24</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:364-378</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10851-022-01068-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">64</subfield><subfield code="j">2022</subfield><subfield code="e">4</subfield><subfield code="b">24</subfield><subfield code="c">02</subfield><subfield code="h">364-378</subfield></datafield></record></collection>
|
author |
Krake, Tim |
spellingShingle |
Krake, Tim ddc 510 bkl 31.00 bkl 54.00 misc Dynamic mode decomposition misc Spectral decomposition misc Background modeling misc Foreground detection Efficient and Robust Background Modeling with Dynamic Mode Decomposition |
authorStr |
Krake, Tim |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)13114278X |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0924-9907 |
topic_title |
510 VZ 31.00 bkl 54.00 bkl Efficient and Robust Background Modeling with Dynamic Mode Decomposition Dynamic mode decomposition Spectral decomposition Background modeling Foreground detection |
topic |
ddc 510 bkl 31.00 bkl 54.00 misc Dynamic mode decomposition misc Spectral decomposition misc Background modeling misc Foreground detection |
topic_unstemmed |
ddc 510 bkl 31.00 bkl 54.00 misc Dynamic mode decomposition misc Spectral decomposition misc Background modeling misc Foreground detection |
topic_browse |
ddc 510 bkl 31.00 bkl 54.00 misc Dynamic mode decomposition misc Spectral decomposition misc Background modeling misc Foreground detection |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of mathematical imaging and vision |
hierarchy_parent_id |
13114278X |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of mathematical imaging and vision |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)13114278X (DE-600)1127403-7 (DE-576)038688964 |
title |
Efficient and Robust Background Modeling with Dynamic Mode Decomposition |
ctrlnum |
(DE-627)OLC2078509205 (DE-He213)s10851-022-01068-0-p |
title_full |
Efficient and Robust Background Modeling with Dynamic Mode Decomposition |
author_sort |
Krake, Tim |
journal |
Journal of mathematical imaging and vision |
journalStr |
Journal of mathematical imaging and vision |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
364 |
author_browse |
Krake, Tim Bruhn, Andrés Eberhardt, Bernhard Weiskopf, Daniel |
container_volume |
64 |
class |
510 VZ 31.00 bkl 54.00 bkl |
format_se |
Aufsätze |
author-letter |
Krake, Tim |
doi_str_mv |
10.1007/s10851-022-01068-0 |
dewey-full |
510 |
title_sort |
efficient and robust background modeling with dynamic mode decomposition |
title_auth |
Efficient and Robust Background Modeling with Dynamic Mode Decomposition |
abstract |
Abstract A large number of modern video background modeling algorithms deal with computational costly minimization problems that often need parameter adjustments. While in most cases spatial and temporal constraints are added artificially to the minimization process, our approach is to exploit Dynamic Mode Decomposition (DMD), a spectral decomposition technique that naturally extracts spatio-temporal patterns from data. Applied to video data, DMD can compute background models. However, the original DMD algorithm for background modeling is neither efficient nor robust. In this paper, we present an equivalent reformulation with constraints leading to a more suitable decomposition into fore- and background. Due to the reformulation, which uses sparse and low-dimensional structures, an efficient and robust algorithm is derived that computes accurate background models. Moreover, we show how our approach can be extended to RGB data, data with periodic parts, and streaming data enabling a versatile use. © The Author(s) 2022 |
abstractGer |
Abstract A large number of modern video background modeling algorithms deal with computational costly minimization problems that often need parameter adjustments. While in most cases spatial and temporal constraints are added artificially to the minimization process, our approach is to exploit Dynamic Mode Decomposition (DMD), a spectral decomposition technique that naturally extracts spatio-temporal patterns from data. Applied to video data, DMD can compute background models. However, the original DMD algorithm for background modeling is neither efficient nor robust. In this paper, we present an equivalent reformulation with constraints leading to a more suitable decomposition into fore- and background. Due to the reformulation, which uses sparse and low-dimensional structures, an efficient and robust algorithm is derived that computes accurate background models. Moreover, we show how our approach can be extended to RGB data, data with periodic parts, and streaming data enabling a versatile use. © The Author(s) 2022 |
abstract_unstemmed |
Abstract A large number of modern video background modeling algorithms deal with computational costly minimization problems that often need parameter adjustments. While in most cases spatial and temporal constraints are added artificially to the minimization process, our approach is to exploit Dynamic Mode Decomposition (DMD), a spectral decomposition technique that naturally extracts spatio-temporal patterns from data. Applied to video data, DMD can compute background models. However, the original DMD algorithm for background modeling is neither efficient nor robust. In this paper, we present an equivalent reformulation with constraints leading to a more suitable decomposition into fore- and background. Due to the reformulation, which uses sparse and low-dimensional structures, an efficient and robust algorithm is derived that computes accurate background models. Moreover, we show how our approach can be extended to RGB data, data with periodic parts, and streaming data enabling a versatile use. © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT |
container_issue |
4 |
title_short |
Efficient and Robust Background Modeling with Dynamic Mode Decomposition |
url |
https://doi.org/10.1007/s10851-022-01068-0 |
remote_bool |
false |
author2 |
Bruhn, Andrés Eberhardt, Bernhard Weiskopf, Daniel |
author2Str |
Bruhn, Andrés Eberhardt, Bernhard Weiskopf, Daniel |
ppnlink |
13114278X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10851-022-01068-0 |
up_date |
2024-07-03T20:47:27.449Z |
_version_ |
1803592293364531201 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2078509205</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506010936.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10851-022-01068-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2078509205</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10851-022-01068-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">31.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.00</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Krake, Tim</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Efficient and Robust Background Modeling with Dynamic Mode Decomposition</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A large number of modern video background modeling algorithms deal with computational costly minimization problems that often need parameter adjustments. While in most cases spatial and temporal constraints are added artificially to the minimization process, our approach is to exploit Dynamic Mode Decomposition (DMD), a spectral decomposition technique that naturally extracts spatio-temporal patterns from data. Applied to video data, DMD can compute background models. However, the original DMD algorithm for background modeling is neither efficient nor robust. In this paper, we present an equivalent reformulation with constraints leading to a more suitable decomposition into fore- and background. Due to the reformulation, which uses sparse and low-dimensional structures, an efficient and robust algorithm is derived that computes accurate background models. Moreover, we show how our approach can be extended to RGB data, data with periodic parts, and streaming data enabling a versatile use.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic mode decomposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Spectral decomposition</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Background modeling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Foreground detection</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bruhn, Andrés</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Eberhardt, Bernhard</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Weiskopf, Daniel</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of mathematical imaging and vision</subfield><subfield code="d">Springer US, 1992</subfield><subfield code="g">64(2022), 4 vom: 24. Feb., Seite 364-378</subfield><subfield code="w">(DE-627)13114278X</subfield><subfield code="w">(DE-600)1127403-7</subfield><subfield code="w">(DE-576)038688964</subfield><subfield code="x">0924-9907</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:64</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4</subfield><subfield code="g">day:24</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:364-378</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10851-022-01068-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">31.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.00</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">64</subfield><subfield code="j">2022</subfield><subfield code="e">4</subfield><subfield code="b">24</subfield><subfield code="c">02</subfield><subfield code="h">364-378</subfield></datafield></record></collection>
|
score |
7.4009056 |