Experimental validation and numerical simulation of flexible and microscale roll gap control technology
Abstract This paper proposes a new flexible and microscale roll gap control technology to obtain a stronger strip flatness control ability. According to the principle of microscale roll gap control technology, an electromagnetic control rolling mill with the function of roll profile control and larg...
Ausführliche Beschreibung
Autor*in: |
Yang, Tingsong [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
Microscale roll gap control technology |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: The international journal of advanced manufacturing technology - Springer London, 1985, 120(2022), 9-10 vom: 02. Apr., Seite 5741-5754 |
---|---|
Übergeordnetes Werk: |
volume:120 ; year:2022 ; number:9-10 ; day:02 ; month:04 ; pages:5741-5754 |
Links: |
---|
DOI / URN: |
10.1007/s00170-022-09000-x |
---|
Katalog-ID: |
OLC2078630403 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2078630403 | ||
003 | DE-627 | ||
005 | 20230506014008.0 | ||
007 | tu | ||
008 | 221220s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00170-022-09000-x |2 doi | |
035 | |a (DE-627)OLC2078630403 | ||
035 | |a (DE-He213)s00170-022-09000-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
100 | 1 | |a Yang, Tingsong |e verfasserin |4 aut | |
245 | 1 | 0 | |a Experimental validation and numerical simulation of flexible and microscale roll gap control technology |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 | ||
520 | |a Abstract This paper proposes a new flexible and microscale roll gap control technology to obtain a stronger strip flatness control ability. According to the principle of microscale roll gap control technology, an electromagnetic control rolling mill with the function of roll profile control and large diameter ratio rolling is designed and built. To analyze the flatness control ability, a comprehensive finite element model (FEM) is established, and an indentation experiment and a rolling experiment are carried out. The simulation results show that under different rolling forces and tensions, the average quadratic crown control ability is more than 40 μm, and the average quartic crown control ability is more than − 3 μm. The control ability increment of the quadratic crown is greater than that of the quartic crown. In the indentation experiment, a stable roll profile can be achieved by PID control after reaching the target roll profile. Increasing the regulation amount can change the strip crown from positive to negative. Even under high rolling force conditions, microscale roll gap control technology can also realize a strip crown adjustment of 19.5 to 0.5 μm. Moreover, this technology can adjust the strip shape from edge waves to non-waves and middle waves in the rolling experiment. In this paper, the feasibility of using this technology to adjust the roll gap shape has been verified, and we demonstrate that the roll gap control goal of uniform transverse size distribution can be achieved. | ||
650 | 4 | |a Microscale roll gap control technology | |
650 | 4 | |a Electromagnetic control rolling mill | |
650 | 4 | |a Electromagnetic control roll | |
650 | 4 | |a Strip flatness control | |
650 | 4 | |a Roll gap shape | |
700 | 1 | |a Chen, Qifa |4 aut | |
700 | 1 | |a Feng, Yanfeng |4 aut | |
700 | 1 | |a Hai, Yang |4 aut | |
700 | 1 | |a Du, Fengshan |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The international journal of advanced manufacturing technology |d Springer London, 1985 |g 120(2022), 9-10 vom: 02. Apr., Seite 5741-5754 |w (DE-627)129185299 |w (DE-600)52651-4 |w (DE-576)014456192 |x 0268-3768 |7 nnns |
773 | 1 | 8 | |g volume:120 |g year:2022 |g number:9-10 |g day:02 |g month:04 |g pages:5741-5754 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00170-022-09000-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_2333 | ||
951 | |a AR | ||
952 | |d 120 |j 2022 |e 9-10 |b 02 |c 04 |h 5741-5754 |
author_variant |
t y ty q c qc y f yf y h yh f d fd |
---|---|
matchkey_str |
article:02683768:2022----::xeietlaiainnnmrcliuainflxbenmcocl |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s00170-022-09000-x doi (DE-627)OLC2078630403 (DE-He213)s00170-022-09000-x-p DE-627 ger DE-627 rakwb eng 670 VZ Yang, Tingsong verfasserin aut Experimental validation and numerical simulation of flexible and microscale roll gap control technology 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 Abstract This paper proposes a new flexible and microscale roll gap control technology to obtain a stronger strip flatness control ability. According to the principle of microscale roll gap control technology, an electromagnetic control rolling mill with the function of roll profile control and large diameter ratio rolling is designed and built. To analyze the flatness control ability, a comprehensive finite element model (FEM) is established, and an indentation experiment and a rolling experiment are carried out. The simulation results show that under different rolling forces and tensions, the average quadratic crown control ability is more than 40 μm, and the average quartic crown control ability is more than − 3 μm. The control ability increment of the quadratic crown is greater than that of the quartic crown. In the indentation experiment, a stable roll profile can be achieved by PID control after reaching the target roll profile. Increasing the regulation amount can change the strip crown from positive to negative. Even under high rolling force conditions, microscale roll gap control technology can also realize a strip crown adjustment of 19.5 to 0.5 μm. Moreover, this technology can adjust the strip shape from edge waves to non-waves and middle waves in the rolling experiment. In this paper, the feasibility of using this technology to adjust the roll gap shape has been verified, and we demonstrate that the roll gap control goal of uniform transverse size distribution can be achieved. Microscale roll gap control technology Electromagnetic control rolling mill Electromagnetic control roll Strip flatness control Roll gap shape Chen, Qifa aut Feng, Yanfeng aut Hai, Yang aut Du, Fengshan aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 120(2022), 9-10 vom: 02. Apr., Seite 5741-5754 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:120 year:2022 number:9-10 day:02 month:04 pages:5741-5754 https://doi.org/10.1007/s00170-022-09000-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 AR 120 2022 9-10 02 04 5741-5754 |
spelling |
10.1007/s00170-022-09000-x doi (DE-627)OLC2078630403 (DE-He213)s00170-022-09000-x-p DE-627 ger DE-627 rakwb eng 670 VZ Yang, Tingsong verfasserin aut Experimental validation and numerical simulation of flexible and microscale roll gap control technology 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 Abstract This paper proposes a new flexible and microscale roll gap control technology to obtain a stronger strip flatness control ability. According to the principle of microscale roll gap control technology, an electromagnetic control rolling mill with the function of roll profile control and large diameter ratio rolling is designed and built. To analyze the flatness control ability, a comprehensive finite element model (FEM) is established, and an indentation experiment and a rolling experiment are carried out. The simulation results show that under different rolling forces and tensions, the average quadratic crown control ability is more than 40 μm, and the average quartic crown control ability is more than − 3 μm. The control ability increment of the quadratic crown is greater than that of the quartic crown. In the indentation experiment, a stable roll profile can be achieved by PID control after reaching the target roll profile. Increasing the regulation amount can change the strip crown from positive to negative. Even under high rolling force conditions, microscale roll gap control technology can also realize a strip crown adjustment of 19.5 to 0.5 μm. Moreover, this technology can adjust the strip shape from edge waves to non-waves and middle waves in the rolling experiment. In this paper, the feasibility of using this technology to adjust the roll gap shape has been verified, and we demonstrate that the roll gap control goal of uniform transverse size distribution can be achieved. Microscale roll gap control technology Electromagnetic control rolling mill Electromagnetic control roll Strip flatness control Roll gap shape Chen, Qifa aut Feng, Yanfeng aut Hai, Yang aut Du, Fengshan aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 120(2022), 9-10 vom: 02. Apr., Seite 5741-5754 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:120 year:2022 number:9-10 day:02 month:04 pages:5741-5754 https://doi.org/10.1007/s00170-022-09000-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 AR 120 2022 9-10 02 04 5741-5754 |
allfields_unstemmed |
10.1007/s00170-022-09000-x doi (DE-627)OLC2078630403 (DE-He213)s00170-022-09000-x-p DE-627 ger DE-627 rakwb eng 670 VZ Yang, Tingsong verfasserin aut Experimental validation and numerical simulation of flexible and microscale roll gap control technology 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 Abstract This paper proposes a new flexible and microscale roll gap control technology to obtain a stronger strip flatness control ability. According to the principle of microscale roll gap control technology, an electromagnetic control rolling mill with the function of roll profile control and large diameter ratio rolling is designed and built. To analyze the flatness control ability, a comprehensive finite element model (FEM) is established, and an indentation experiment and a rolling experiment are carried out. The simulation results show that under different rolling forces and tensions, the average quadratic crown control ability is more than 40 μm, and the average quartic crown control ability is more than − 3 μm. The control ability increment of the quadratic crown is greater than that of the quartic crown. In the indentation experiment, a stable roll profile can be achieved by PID control after reaching the target roll profile. Increasing the regulation amount can change the strip crown from positive to negative. Even under high rolling force conditions, microscale roll gap control technology can also realize a strip crown adjustment of 19.5 to 0.5 μm. Moreover, this technology can adjust the strip shape from edge waves to non-waves and middle waves in the rolling experiment. In this paper, the feasibility of using this technology to adjust the roll gap shape has been verified, and we demonstrate that the roll gap control goal of uniform transverse size distribution can be achieved. Microscale roll gap control technology Electromagnetic control rolling mill Electromagnetic control roll Strip flatness control Roll gap shape Chen, Qifa aut Feng, Yanfeng aut Hai, Yang aut Du, Fengshan aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 120(2022), 9-10 vom: 02. Apr., Seite 5741-5754 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:120 year:2022 number:9-10 day:02 month:04 pages:5741-5754 https://doi.org/10.1007/s00170-022-09000-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 AR 120 2022 9-10 02 04 5741-5754 |
allfieldsGer |
10.1007/s00170-022-09000-x doi (DE-627)OLC2078630403 (DE-He213)s00170-022-09000-x-p DE-627 ger DE-627 rakwb eng 670 VZ Yang, Tingsong verfasserin aut Experimental validation and numerical simulation of flexible and microscale roll gap control technology 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 Abstract This paper proposes a new flexible and microscale roll gap control technology to obtain a stronger strip flatness control ability. According to the principle of microscale roll gap control technology, an electromagnetic control rolling mill with the function of roll profile control and large diameter ratio rolling is designed and built. To analyze the flatness control ability, a comprehensive finite element model (FEM) is established, and an indentation experiment and a rolling experiment are carried out. The simulation results show that under different rolling forces and tensions, the average quadratic crown control ability is more than 40 μm, and the average quartic crown control ability is more than − 3 μm. The control ability increment of the quadratic crown is greater than that of the quartic crown. In the indentation experiment, a stable roll profile can be achieved by PID control after reaching the target roll profile. Increasing the regulation amount can change the strip crown from positive to negative. Even under high rolling force conditions, microscale roll gap control technology can also realize a strip crown adjustment of 19.5 to 0.5 μm. Moreover, this technology can adjust the strip shape from edge waves to non-waves and middle waves in the rolling experiment. In this paper, the feasibility of using this technology to adjust the roll gap shape has been verified, and we demonstrate that the roll gap control goal of uniform transverse size distribution can be achieved. Microscale roll gap control technology Electromagnetic control rolling mill Electromagnetic control roll Strip flatness control Roll gap shape Chen, Qifa aut Feng, Yanfeng aut Hai, Yang aut Du, Fengshan aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 120(2022), 9-10 vom: 02. Apr., Seite 5741-5754 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:120 year:2022 number:9-10 day:02 month:04 pages:5741-5754 https://doi.org/10.1007/s00170-022-09000-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 AR 120 2022 9-10 02 04 5741-5754 |
allfieldsSound |
10.1007/s00170-022-09000-x doi (DE-627)OLC2078630403 (DE-He213)s00170-022-09000-x-p DE-627 ger DE-627 rakwb eng 670 VZ Yang, Tingsong verfasserin aut Experimental validation and numerical simulation of flexible and microscale roll gap control technology 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 Abstract This paper proposes a new flexible and microscale roll gap control technology to obtain a stronger strip flatness control ability. According to the principle of microscale roll gap control technology, an electromagnetic control rolling mill with the function of roll profile control and large diameter ratio rolling is designed and built. To analyze the flatness control ability, a comprehensive finite element model (FEM) is established, and an indentation experiment and a rolling experiment are carried out. The simulation results show that under different rolling forces and tensions, the average quadratic crown control ability is more than 40 μm, and the average quartic crown control ability is more than − 3 μm. The control ability increment of the quadratic crown is greater than that of the quartic crown. In the indentation experiment, a stable roll profile can be achieved by PID control after reaching the target roll profile. Increasing the regulation amount can change the strip crown from positive to negative. Even under high rolling force conditions, microscale roll gap control technology can also realize a strip crown adjustment of 19.5 to 0.5 μm. Moreover, this technology can adjust the strip shape from edge waves to non-waves and middle waves in the rolling experiment. In this paper, the feasibility of using this technology to adjust the roll gap shape has been verified, and we demonstrate that the roll gap control goal of uniform transverse size distribution can be achieved. Microscale roll gap control technology Electromagnetic control rolling mill Electromagnetic control roll Strip flatness control Roll gap shape Chen, Qifa aut Feng, Yanfeng aut Hai, Yang aut Du, Fengshan aut Enthalten in The international journal of advanced manufacturing technology Springer London, 1985 120(2022), 9-10 vom: 02. Apr., Seite 5741-5754 (DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 0268-3768 nnns volume:120 year:2022 number:9-10 day:02 month:04 pages:5741-5754 https://doi.org/10.1007/s00170-022-09000-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 AR 120 2022 9-10 02 04 5741-5754 |
language |
English |
source |
Enthalten in The international journal of advanced manufacturing technology 120(2022), 9-10 vom: 02. Apr., Seite 5741-5754 volume:120 year:2022 number:9-10 day:02 month:04 pages:5741-5754 |
sourceStr |
Enthalten in The international journal of advanced manufacturing technology 120(2022), 9-10 vom: 02. Apr., Seite 5741-5754 volume:120 year:2022 number:9-10 day:02 month:04 pages:5741-5754 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Microscale roll gap control technology Electromagnetic control rolling mill Electromagnetic control roll Strip flatness control Roll gap shape |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
The international journal of advanced manufacturing technology |
authorswithroles_txt_mv |
Yang, Tingsong @@aut@@ Chen, Qifa @@aut@@ Feng, Yanfeng @@aut@@ Hai, Yang @@aut@@ Du, Fengshan @@aut@@ |
publishDateDaySort_date |
2022-04-02T00:00:00Z |
hierarchy_top_id |
129185299 |
dewey-sort |
3670 |
id |
OLC2078630403 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2078630403</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506014008.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00170-022-09000-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2078630403</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00170-022-09000-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Tingsong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Experimental validation and numerical simulation of flexible and microscale roll gap control technology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper proposes a new flexible and microscale roll gap control technology to obtain a stronger strip flatness control ability. According to the principle of microscale roll gap control technology, an electromagnetic control rolling mill with the function of roll profile control and large diameter ratio rolling is designed and built. To analyze the flatness control ability, a comprehensive finite element model (FEM) is established, and an indentation experiment and a rolling experiment are carried out. The simulation results show that under different rolling forces and tensions, the average quadratic crown control ability is more than 40 μm, and the average quartic crown control ability is more than − 3 μm. The control ability increment of the quadratic crown is greater than that of the quartic crown. In the indentation experiment, a stable roll profile can be achieved by PID control after reaching the target roll profile. Increasing the regulation amount can change the strip crown from positive to negative. Even under high rolling force conditions, microscale roll gap control technology can also realize a strip crown adjustment of 19.5 to 0.5 μm. Moreover, this technology can adjust the strip shape from edge waves to non-waves and middle waves in the rolling experiment. In this paper, the feasibility of using this technology to adjust the roll gap shape has been verified, and we demonstrate that the roll gap control goal of uniform transverse size distribution can be achieved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microscale roll gap control technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electromagnetic control rolling mill</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electromagnetic control roll</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strip flatness control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Roll gap shape</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Qifa</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Feng, Yanfeng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hai, Yang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Du, Fengshan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The international journal of advanced manufacturing technology</subfield><subfield code="d">Springer London, 1985</subfield><subfield code="g">120(2022), 9-10 vom: 02. Apr., Seite 5741-5754</subfield><subfield code="w">(DE-627)129185299</subfield><subfield code="w">(DE-600)52651-4</subfield><subfield code="w">(DE-576)014456192</subfield><subfield code="x">0268-3768</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:120</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:9-10</subfield><subfield code="g">day:02</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:5741-5754</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00170-022-09000-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">120</subfield><subfield code="j">2022</subfield><subfield code="e">9-10</subfield><subfield code="b">02</subfield><subfield code="c">04</subfield><subfield code="h">5741-5754</subfield></datafield></record></collection>
|
author |
Yang, Tingsong |
spellingShingle |
Yang, Tingsong ddc 670 misc Microscale roll gap control technology misc Electromagnetic control rolling mill misc Electromagnetic control roll misc Strip flatness control misc Roll gap shape Experimental validation and numerical simulation of flexible and microscale roll gap control technology |
authorStr |
Yang, Tingsong |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129185299 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0268-3768 |
topic_title |
670 VZ Experimental validation and numerical simulation of flexible and microscale roll gap control technology Microscale roll gap control technology Electromagnetic control rolling mill Electromagnetic control roll Strip flatness control Roll gap shape |
topic |
ddc 670 misc Microscale roll gap control technology misc Electromagnetic control rolling mill misc Electromagnetic control roll misc Strip flatness control misc Roll gap shape |
topic_unstemmed |
ddc 670 misc Microscale roll gap control technology misc Electromagnetic control rolling mill misc Electromagnetic control roll misc Strip flatness control misc Roll gap shape |
topic_browse |
ddc 670 misc Microscale roll gap control technology misc Electromagnetic control rolling mill misc Electromagnetic control roll misc Strip flatness control misc Roll gap shape |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
The international journal of advanced manufacturing technology |
hierarchy_parent_id |
129185299 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
The international journal of advanced manufacturing technology |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129185299 (DE-600)52651-4 (DE-576)014456192 |
title |
Experimental validation and numerical simulation of flexible and microscale roll gap control technology |
ctrlnum |
(DE-627)OLC2078630403 (DE-He213)s00170-022-09000-x-p |
title_full |
Experimental validation and numerical simulation of flexible and microscale roll gap control technology |
author_sort |
Yang, Tingsong |
journal |
The international journal of advanced manufacturing technology |
journalStr |
The international journal of advanced manufacturing technology |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
5741 |
author_browse |
Yang, Tingsong Chen, Qifa Feng, Yanfeng Hai, Yang Du, Fengshan |
container_volume |
120 |
class |
670 VZ |
format_se |
Aufsätze |
author-letter |
Yang, Tingsong |
doi_str_mv |
10.1007/s00170-022-09000-x |
dewey-full |
670 |
title_sort |
experimental validation and numerical simulation of flexible and microscale roll gap control technology |
title_auth |
Experimental validation and numerical simulation of flexible and microscale roll gap control technology |
abstract |
Abstract This paper proposes a new flexible and microscale roll gap control technology to obtain a stronger strip flatness control ability. According to the principle of microscale roll gap control technology, an electromagnetic control rolling mill with the function of roll profile control and large diameter ratio rolling is designed and built. To analyze the flatness control ability, a comprehensive finite element model (FEM) is established, and an indentation experiment and a rolling experiment are carried out. The simulation results show that under different rolling forces and tensions, the average quadratic crown control ability is more than 40 μm, and the average quartic crown control ability is more than − 3 μm. The control ability increment of the quadratic crown is greater than that of the quartic crown. In the indentation experiment, a stable roll profile can be achieved by PID control after reaching the target roll profile. Increasing the regulation amount can change the strip crown from positive to negative. Even under high rolling force conditions, microscale roll gap control technology can also realize a strip crown adjustment of 19.5 to 0.5 μm. Moreover, this technology can adjust the strip shape from edge waves to non-waves and middle waves in the rolling experiment. In this paper, the feasibility of using this technology to adjust the roll gap shape has been verified, and we demonstrate that the roll gap control goal of uniform transverse size distribution can be achieved. © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 |
abstractGer |
Abstract This paper proposes a new flexible and microscale roll gap control technology to obtain a stronger strip flatness control ability. According to the principle of microscale roll gap control technology, an electromagnetic control rolling mill with the function of roll profile control and large diameter ratio rolling is designed and built. To analyze the flatness control ability, a comprehensive finite element model (FEM) is established, and an indentation experiment and a rolling experiment are carried out. The simulation results show that under different rolling forces and tensions, the average quadratic crown control ability is more than 40 μm, and the average quartic crown control ability is more than − 3 μm. The control ability increment of the quadratic crown is greater than that of the quartic crown. In the indentation experiment, a stable roll profile can be achieved by PID control after reaching the target roll profile. Increasing the regulation amount can change the strip crown from positive to negative. Even under high rolling force conditions, microscale roll gap control technology can also realize a strip crown adjustment of 19.5 to 0.5 μm. Moreover, this technology can adjust the strip shape from edge waves to non-waves and middle waves in the rolling experiment. In this paper, the feasibility of using this technology to adjust the roll gap shape has been verified, and we demonstrate that the roll gap control goal of uniform transverse size distribution can be achieved. © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 |
abstract_unstemmed |
Abstract This paper proposes a new flexible and microscale roll gap control technology to obtain a stronger strip flatness control ability. According to the principle of microscale roll gap control technology, an electromagnetic control rolling mill with the function of roll profile control and large diameter ratio rolling is designed and built. To analyze the flatness control ability, a comprehensive finite element model (FEM) is established, and an indentation experiment and a rolling experiment are carried out. The simulation results show that under different rolling forces and tensions, the average quadratic crown control ability is more than 40 μm, and the average quartic crown control ability is more than − 3 μm. The control ability increment of the quadratic crown is greater than that of the quartic crown. In the indentation experiment, a stable roll profile can be achieved by PID control after reaching the target roll profile. Increasing the regulation amount can change the strip crown from positive to negative. Even under high rolling force conditions, microscale roll gap control technology can also realize a strip crown adjustment of 19.5 to 0.5 μm. Moreover, this technology can adjust the strip shape from edge waves to non-waves and middle waves in the rolling experiment. In this paper, the feasibility of using this technology to adjust the roll gap shape has been verified, and we demonstrate that the roll gap control goal of uniform transverse size distribution can be achieved. © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2018 GBV_ILN_2333 |
container_issue |
9-10 |
title_short |
Experimental validation and numerical simulation of flexible and microscale roll gap control technology |
url |
https://doi.org/10.1007/s00170-022-09000-x |
remote_bool |
false |
author2 |
Chen, Qifa Feng, Yanfeng Hai, Yang Du, Fengshan |
author2Str |
Chen, Qifa Feng, Yanfeng Hai, Yang Du, Fengshan |
ppnlink |
129185299 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00170-022-09000-x |
up_date |
2024-07-03T21:22:27.887Z |
_version_ |
1803594495833407488 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2078630403</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506014008.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00170-022-09000-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2078630403</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00170-022-09000-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yang, Tingsong</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Experimental validation and numerical simulation of flexible and microscale roll gap control technology</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper proposes a new flexible and microscale roll gap control technology to obtain a stronger strip flatness control ability. According to the principle of microscale roll gap control technology, an electromagnetic control rolling mill with the function of roll profile control and large diameter ratio rolling is designed and built. To analyze the flatness control ability, a comprehensive finite element model (FEM) is established, and an indentation experiment and a rolling experiment are carried out. The simulation results show that under different rolling forces and tensions, the average quadratic crown control ability is more than 40 μm, and the average quartic crown control ability is more than − 3 μm. The control ability increment of the quadratic crown is greater than that of the quartic crown. In the indentation experiment, a stable roll profile can be achieved by PID control after reaching the target roll profile. Increasing the regulation amount can change the strip crown from positive to negative. Even under high rolling force conditions, microscale roll gap control technology can also realize a strip crown adjustment of 19.5 to 0.5 μm. Moreover, this technology can adjust the strip shape from edge waves to non-waves and middle waves in the rolling experiment. In this paper, the feasibility of using this technology to adjust the roll gap shape has been verified, and we demonstrate that the roll gap control goal of uniform transverse size distribution can be achieved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Microscale roll gap control technology</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electromagnetic control rolling mill</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Electromagnetic control roll</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strip flatness control</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Roll gap shape</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Qifa</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Feng, Yanfeng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hai, Yang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Du, Fengshan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The international journal of advanced manufacturing technology</subfield><subfield code="d">Springer London, 1985</subfield><subfield code="g">120(2022), 9-10 vom: 02. Apr., Seite 5741-5754</subfield><subfield code="w">(DE-627)129185299</subfield><subfield code="w">(DE-600)52651-4</subfield><subfield code="w">(DE-576)014456192</subfield><subfield code="x">0268-3768</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:120</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:9-10</subfield><subfield code="g">day:02</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:5741-5754</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00170-022-09000-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2333</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">120</subfield><subfield code="j">2022</subfield><subfield code="e">9-10</subfield><subfield code="b">02</subfield><subfield code="c">04</subfield><subfield code="h">5741-5754</subfield></datafield></record></collection>
|
score |
7.4009247 |