Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon
Abstract Periodic arrays of gold wires and split ring resonators (SRR) with a minimum feature size of 50 nm are fabricated on low-doped silicon. To our knowledge, the periodic arrangement of SRRs and wires considered in this work has not been studied in the near-infrared domain yet. For normal-incid...
Ausführliche Beschreibung
Autor*in: |
Gadot, F. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2007 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC 2007 |
---|
Übergeordnetes Werk: |
Enthalten in: Optical and quantum electronics - Springer US, 1975, 39(2007), 4-6 vom: März, Seite 273-284 |
---|---|
Übergeordnetes Werk: |
volume:39 ; year:2007 ; number:4-6 ; month:03 ; pages:273-284 |
Links: |
---|
DOI / URN: |
10.1007/s11082-007-9088-2 |
---|
Katalog-ID: |
OLC207868239X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC207868239X | ||
003 | DE-627 | ||
005 | 20230506020848.0 | ||
007 | tu | ||
008 | 221220s2007 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11082-007-9088-2 |2 doi | |
035 | |a (DE-627)OLC207868239X | ||
035 | |a (DE-He213)s11082-007-9088-2-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 500 |a 620 |q VZ |
100 | 1 | |a Gadot, F. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon |
264 | 1 | |c 2007 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC 2007 | ||
520 | |a Abstract Periodic arrays of gold wires and split ring resonators (SRR) with a minimum feature size of 50 nm are fabricated on low-doped silicon. To our knowledge, the periodic arrangement of SRRs and wires considered in this work has not been studied in the near-infrared domain yet. For normal-incidence conditions, this metamaterial structure exhibits resonances at 70 and 170 THz (i.e., at λ ≈ 4.3 and 1.75 μm), which are identified as LC- and Mie resonances, respectively. These resonances are also observed for the SRRs alone, but the amplitude of the Mie resonance is reinforced due to the coupling between the SRRs and wires. The structure is simulated using finite-element software, while transmission and reflection measurements are performed with a Fourier transform infrared spectrometer. Numerical simulations are found to be in very good agreement with experimental characterizations, thereby showing that the Drude model used in calculations is well suited to simulate gold structures at near-infrared frequencies. Theoretical calculations predict that the metamaterial has a negative permittivity and a negative permeability near each resonance. | ||
650 | 4 | |a Metamaterial | |
650 | 4 | |a Negative permittivity | |
650 | 4 | |a Negative permeability | |
650 | 4 | |a TeraHertz frequencies | |
700 | 1 | |a Belier, B. |4 aut | |
700 | 1 | |a Aassime, A. |4 aut | |
700 | 1 | |a Mangeney, J. |4 aut | |
700 | 1 | |a de Lustrac, A. |4 aut | |
700 | 1 | |a Lourtioz, J.-M. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Optical and quantum electronics |d Springer US, 1975 |g 39(2007), 4-6 vom: März, Seite 273-284 |w (DE-627)129419540 |w (DE-600)189950-8 |w (DE-576)014796139 |x 0306-8919 |7 nnns |
773 | 1 | 8 | |g volume:39 |g year:2007 |g number:4-6 |g month:03 |g pages:273-284 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11082-007-9088-2 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_70 | ||
912 | |a GBV_ILN_150 | ||
912 | |a GBV_ILN_4036 | ||
912 | |a GBV_ILN_4307 | ||
912 | |a GBV_ILN_4700 | ||
951 | |a AR | ||
952 | |d 39 |j 2007 |e 4-6 |c 03 |h 273-284 |
author_variant |
f g fg b b bb a a aa j m jm l a d la lad j m l jml |
---|---|
matchkey_str |
article:03068919:2007----::nrrdepnefmtmtramdoglwrsnsltigeo |
hierarchy_sort_str |
2007 |
publishDate |
2007 |
allfields |
10.1007/s11082-007-9088-2 doi (DE-627)OLC207868239X (DE-He213)s11082-007-9088-2-p DE-627 ger DE-627 rakwb eng 500 620 VZ Gadot, F. verfasserin aut Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2007 Abstract Periodic arrays of gold wires and split ring resonators (SRR) with a minimum feature size of 50 nm are fabricated on low-doped silicon. To our knowledge, the periodic arrangement of SRRs and wires considered in this work has not been studied in the near-infrared domain yet. For normal-incidence conditions, this metamaterial structure exhibits resonances at 70 and 170 THz (i.e., at λ ≈ 4.3 and 1.75 μm), which are identified as LC- and Mie resonances, respectively. These resonances are also observed for the SRRs alone, but the amplitude of the Mie resonance is reinforced due to the coupling between the SRRs and wires. The structure is simulated using finite-element software, while transmission and reflection measurements are performed with a Fourier transform infrared spectrometer. Numerical simulations are found to be in very good agreement with experimental characterizations, thereby showing that the Drude model used in calculations is well suited to simulate gold structures at near-infrared frequencies. Theoretical calculations predict that the metamaterial has a negative permittivity and a negative permeability near each resonance. Metamaterial Negative permittivity Negative permeability TeraHertz frequencies Belier, B. aut Aassime, A. aut Mangeney, J. aut de Lustrac, A. aut Lourtioz, J.-M. aut Enthalten in Optical and quantum electronics Springer US, 1975 39(2007), 4-6 vom: März, Seite 273-284 (DE-627)129419540 (DE-600)189950-8 (DE-576)014796139 0306-8919 nnns volume:39 year:2007 number:4-6 month:03 pages:273-284 https://doi.org/10.1007/s11082-007-9088-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_150 GBV_ILN_4036 GBV_ILN_4307 GBV_ILN_4700 AR 39 2007 4-6 03 273-284 |
spelling |
10.1007/s11082-007-9088-2 doi (DE-627)OLC207868239X (DE-He213)s11082-007-9088-2-p DE-627 ger DE-627 rakwb eng 500 620 VZ Gadot, F. verfasserin aut Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2007 Abstract Periodic arrays of gold wires and split ring resonators (SRR) with a minimum feature size of 50 nm are fabricated on low-doped silicon. To our knowledge, the periodic arrangement of SRRs and wires considered in this work has not been studied in the near-infrared domain yet. For normal-incidence conditions, this metamaterial structure exhibits resonances at 70 and 170 THz (i.e., at λ ≈ 4.3 and 1.75 μm), which are identified as LC- and Mie resonances, respectively. These resonances are also observed for the SRRs alone, but the amplitude of the Mie resonance is reinforced due to the coupling between the SRRs and wires. The structure is simulated using finite-element software, while transmission and reflection measurements are performed with a Fourier transform infrared spectrometer. Numerical simulations are found to be in very good agreement with experimental characterizations, thereby showing that the Drude model used in calculations is well suited to simulate gold structures at near-infrared frequencies. Theoretical calculations predict that the metamaterial has a negative permittivity and a negative permeability near each resonance. Metamaterial Negative permittivity Negative permeability TeraHertz frequencies Belier, B. aut Aassime, A. aut Mangeney, J. aut de Lustrac, A. aut Lourtioz, J.-M. aut Enthalten in Optical and quantum electronics Springer US, 1975 39(2007), 4-6 vom: März, Seite 273-284 (DE-627)129419540 (DE-600)189950-8 (DE-576)014796139 0306-8919 nnns volume:39 year:2007 number:4-6 month:03 pages:273-284 https://doi.org/10.1007/s11082-007-9088-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_150 GBV_ILN_4036 GBV_ILN_4307 GBV_ILN_4700 AR 39 2007 4-6 03 273-284 |
allfields_unstemmed |
10.1007/s11082-007-9088-2 doi (DE-627)OLC207868239X (DE-He213)s11082-007-9088-2-p DE-627 ger DE-627 rakwb eng 500 620 VZ Gadot, F. verfasserin aut Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2007 Abstract Periodic arrays of gold wires and split ring resonators (SRR) with a minimum feature size of 50 nm are fabricated on low-doped silicon. To our knowledge, the periodic arrangement of SRRs and wires considered in this work has not been studied in the near-infrared domain yet. For normal-incidence conditions, this metamaterial structure exhibits resonances at 70 and 170 THz (i.e., at λ ≈ 4.3 and 1.75 μm), which are identified as LC- and Mie resonances, respectively. These resonances are also observed for the SRRs alone, but the amplitude of the Mie resonance is reinforced due to the coupling between the SRRs and wires. The structure is simulated using finite-element software, while transmission and reflection measurements are performed with a Fourier transform infrared spectrometer. Numerical simulations are found to be in very good agreement with experimental characterizations, thereby showing that the Drude model used in calculations is well suited to simulate gold structures at near-infrared frequencies. Theoretical calculations predict that the metamaterial has a negative permittivity and a negative permeability near each resonance. Metamaterial Negative permittivity Negative permeability TeraHertz frequencies Belier, B. aut Aassime, A. aut Mangeney, J. aut de Lustrac, A. aut Lourtioz, J.-M. aut Enthalten in Optical and quantum electronics Springer US, 1975 39(2007), 4-6 vom: März, Seite 273-284 (DE-627)129419540 (DE-600)189950-8 (DE-576)014796139 0306-8919 nnns volume:39 year:2007 number:4-6 month:03 pages:273-284 https://doi.org/10.1007/s11082-007-9088-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_150 GBV_ILN_4036 GBV_ILN_4307 GBV_ILN_4700 AR 39 2007 4-6 03 273-284 |
allfieldsGer |
10.1007/s11082-007-9088-2 doi (DE-627)OLC207868239X (DE-He213)s11082-007-9088-2-p DE-627 ger DE-627 rakwb eng 500 620 VZ Gadot, F. verfasserin aut Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2007 Abstract Periodic arrays of gold wires and split ring resonators (SRR) with a minimum feature size of 50 nm are fabricated on low-doped silicon. To our knowledge, the periodic arrangement of SRRs and wires considered in this work has not been studied in the near-infrared domain yet. For normal-incidence conditions, this metamaterial structure exhibits resonances at 70 and 170 THz (i.e., at λ ≈ 4.3 and 1.75 μm), which are identified as LC- and Mie resonances, respectively. These resonances are also observed for the SRRs alone, but the amplitude of the Mie resonance is reinforced due to the coupling between the SRRs and wires. The structure is simulated using finite-element software, while transmission and reflection measurements are performed with a Fourier transform infrared spectrometer. Numerical simulations are found to be in very good agreement with experimental characterizations, thereby showing that the Drude model used in calculations is well suited to simulate gold structures at near-infrared frequencies. Theoretical calculations predict that the metamaterial has a negative permittivity and a negative permeability near each resonance. Metamaterial Negative permittivity Negative permeability TeraHertz frequencies Belier, B. aut Aassime, A. aut Mangeney, J. aut de Lustrac, A. aut Lourtioz, J.-M. aut Enthalten in Optical and quantum electronics Springer US, 1975 39(2007), 4-6 vom: März, Seite 273-284 (DE-627)129419540 (DE-600)189950-8 (DE-576)014796139 0306-8919 nnns volume:39 year:2007 number:4-6 month:03 pages:273-284 https://doi.org/10.1007/s11082-007-9088-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_150 GBV_ILN_4036 GBV_ILN_4307 GBV_ILN_4700 AR 39 2007 4-6 03 273-284 |
allfieldsSound |
10.1007/s11082-007-9088-2 doi (DE-627)OLC207868239X (DE-He213)s11082-007-9088-2-p DE-627 ger DE-627 rakwb eng 500 620 VZ Gadot, F. verfasserin aut Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon 2007 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC 2007 Abstract Periodic arrays of gold wires and split ring resonators (SRR) with a minimum feature size of 50 nm are fabricated on low-doped silicon. To our knowledge, the periodic arrangement of SRRs and wires considered in this work has not been studied in the near-infrared domain yet. For normal-incidence conditions, this metamaterial structure exhibits resonances at 70 and 170 THz (i.e., at λ ≈ 4.3 and 1.75 μm), which are identified as LC- and Mie resonances, respectively. These resonances are also observed for the SRRs alone, but the amplitude of the Mie resonance is reinforced due to the coupling between the SRRs and wires. The structure is simulated using finite-element software, while transmission and reflection measurements are performed with a Fourier transform infrared spectrometer. Numerical simulations are found to be in very good agreement with experimental characterizations, thereby showing that the Drude model used in calculations is well suited to simulate gold structures at near-infrared frequencies. Theoretical calculations predict that the metamaterial has a negative permittivity and a negative permeability near each resonance. Metamaterial Negative permittivity Negative permeability TeraHertz frequencies Belier, B. aut Aassime, A. aut Mangeney, J. aut de Lustrac, A. aut Lourtioz, J.-M. aut Enthalten in Optical and quantum electronics Springer US, 1975 39(2007), 4-6 vom: März, Seite 273-284 (DE-627)129419540 (DE-600)189950-8 (DE-576)014796139 0306-8919 nnns volume:39 year:2007 number:4-6 month:03 pages:273-284 https://doi.org/10.1007/s11082-007-9088-2 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_150 GBV_ILN_4036 GBV_ILN_4307 GBV_ILN_4700 AR 39 2007 4-6 03 273-284 |
language |
English |
source |
Enthalten in Optical and quantum electronics 39(2007), 4-6 vom: März, Seite 273-284 volume:39 year:2007 number:4-6 month:03 pages:273-284 |
sourceStr |
Enthalten in Optical and quantum electronics 39(2007), 4-6 vom: März, Seite 273-284 volume:39 year:2007 number:4-6 month:03 pages:273-284 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Metamaterial Negative permittivity Negative permeability TeraHertz frequencies |
dewey-raw |
500 |
isfreeaccess_bool |
false |
container_title |
Optical and quantum electronics |
authorswithroles_txt_mv |
Gadot, F. @@aut@@ Belier, B. @@aut@@ Aassime, A. @@aut@@ Mangeney, J. @@aut@@ de Lustrac, A. @@aut@@ Lourtioz, J.-M. @@aut@@ |
publishDateDaySort_date |
2007-03-01T00:00:00Z |
hierarchy_top_id |
129419540 |
dewey-sort |
3500 |
id |
OLC207868239X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC207868239X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506020848.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11082-007-9088-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC207868239X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11082-007-9088-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gadot, F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Periodic arrays of gold wires and split ring resonators (SRR) with a minimum feature size of 50 nm are fabricated on low-doped silicon. To our knowledge, the periodic arrangement of SRRs and wires considered in this work has not been studied in the near-infrared domain yet. For normal-incidence conditions, this metamaterial structure exhibits resonances at 70 and 170 THz (i.e., at λ ≈ 4.3 and 1.75 μm), which are identified as LC- and Mie resonances, respectively. These resonances are also observed for the SRRs alone, but the amplitude of the Mie resonance is reinforced due to the coupling between the SRRs and wires. The structure is simulated using finite-element software, while transmission and reflection measurements are performed with a Fourier transform infrared spectrometer. Numerical simulations are found to be in very good agreement with experimental characterizations, thereby showing that the Drude model used in calculations is well suited to simulate gold structures at near-infrared frequencies. Theoretical calculations predict that the metamaterial has a negative permittivity and a negative permeability near each resonance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metamaterial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Negative permittivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Negative permeability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TeraHertz frequencies</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Belier, B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aassime, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mangeney, J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">de Lustrac, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lourtioz, J.-M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Optical and quantum electronics</subfield><subfield code="d">Springer US, 1975</subfield><subfield code="g">39(2007), 4-6 vom: März, Seite 273-284</subfield><subfield code="w">(DE-627)129419540</subfield><subfield code="w">(DE-600)189950-8</subfield><subfield code="w">(DE-576)014796139</subfield><subfield code="x">0306-8919</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:39</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:4-6</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:273-284</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11082-007-9088-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">39</subfield><subfield code="j">2007</subfield><subfield code="e">4-6</subfield><subfield code="c">03</subfield><subfield code="h">273-284</subfield></datafield></record></collection>
|
author |
Gadot, F. |
spellingShingle |
Gadot, F. ddc 500 misc Metamaterial misc Negative permittivity misc Negative permeability misc TeraHertz frequencies Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon |
authorStr |
Gadot, F. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129419540 |
format |
Article |
dewey-ones |
500 - Natural sciences & mathematics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0306-8919 |
topic_title |
500 620 VZ Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon Metamaterial Negative permittivity Negative permeability TeraHertz frequencies |
topic |
ddc 500 misc Metamaterial misc Negative permittivity misc Negative permeability misc TeraHertz frequencies |
topic_unstemmed |
ddc 500 misc Metamaterial misc Negative permittivity misc Negative permeability misc TeraHertz frequencies |
topic_browse |
ddc 500 misc Metamaterial misc Negative permittivity misc Negative permeability misc TeraHertz frequencies |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Optical and quantum electronics |
hierarchy_parent_id |
129419540 |
dewey-tens |
500 - Science 620 - Engineering |
hierarchy_top_title |
Optical and quantum electronics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129419540 (DE-600)189950-8 (DE-576)014796139 |
title |
Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon |
ctrlnum |
(DE-627)OLC207868239X (DE-He213)s11082-007-9088-2-p |
title_full |
Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon |
author_sort |
Gadot, F. |
journal |
Optical and quantum electronics |
journalStr |
Optical and quantum electronics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2007 |
contenttype_str_mv |
txt |
container_start_page |
273 |
author_browse |
Gadot, F. Belier, B. Aassime, A. Mangeney, J. de Lustrac, A. Lourtioz, J.-M. |
container_volume |
39 |
class |
500 620 VZ |
format_se |
Aufsätze |
author-letter |
Gadot, F. |
doi_str_mv |
10.1007/s11082-007-9088-2 |
dewey-full |
500 620 |
title_sort |
infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon |
title_auth |
Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon |
abstract |
Abstract Periodic arrays of gold wires and split ring resonators (SRR) with a minimum feature size of 50 nm are fabricated on low-doped silicon. To our knowledge, the periodic arrangement of SRRs and wires considered in this work has not been studied in the near-infrared domain yet. For normal-incidence conditions, this metamaterial structure exhibits resonances at 70 and 170 THz (i.e., at λ ≈ 4.3 and 1.75 μm), which are identified as LC- and Mie resonances, respectively. These resonances are also observed for the SRRs alone, but the amplitude of the Mie resonance is reinforced due to the coupling between the SRRs and wires. The structure is simulated using finite-element software, while transmission and reflection measurements are performed with a Fourier transform infrared spectrometer. Numerical simulations are found to be in very good agreement with experimental characterizations, thereby showing that the Drude model used in calculations is well suited to simulate gold structures at near-infrared frequencies. Theoretical calculations predict that the metamaterial has a negative permittivity and a negative permeability near each resonance. © Springer Science+Business Media, LLC 2007 |
abstractGer |
Abstract Periodic arrays of gold wires and split ring resonators (SRR) with a minimum feature size of 50 nm are fabricated on low-doped silicon. To our knowledge, the periodic arrangement of SRRs and wires considered in this work has not been studied in the near-infrared domain yet. For normal-incidence conditions, this metamaterial structure exhibits resonances at 70 and 170 THz (i.e., at λ ≈ 4.3 and 1.75 μm), which are identified as LC- and Mie resonances, respectively. These resonances are also observed for the SRRs alone, but the amplitude of the Mie resonance is reinforced due to the coupling between the SRRs and wires. The structure is simulated using finite-element software, while transmission and reflection measurements are performed with a Fourier transform infrared spectrometer. Numerical simulations are found to be in very good agreement with experimental characterizations, thereby showing that the Drude model used in calculations is well suited to simulate gold structures at near-infrared frequencies. Theoretical calculations predict that the metamaterial has a negative permittivity and a negative permeability near each resonance. © Springer Science+Business Media, LLC 2007 |
abstract_unstemmed |
Abstract Periodic arrays of gold wires and split ring resonators (SRR) with a minimum feature size of 50 nm are fabricated on low-doped silicon. To our knowledge, the periodic arrangement of SRRs and wires considered in this work has not been studied in the near-infrared domain yet. For normal-incidence conditions, this metamaterial structure exhibits resonances at 70 and 170 THz (i.e., at λ ≈ 4.3 and 1.75 μm), which are identified as LC- and Mie resonances, respectively. These resonances are also observed for the SRRs alone, but the amplitude of the Mie resonance is reinforced due to the coupling between the SRRs and wires. The structure is simulated using finite-element software, while transmission and reflection measurements are performed with a Fourier transform infrared spectrometer. Numerical simulations are found to be in very good agreement with experimental characterizations, thereby showing that the Drude model used in calculations is well suited to simulate gold structures at near-infrared frequencies. Theoretical calculations predict that the metamaterial has a negative permittivity and a negative permeability near each resonance. © Springer Science+Business Media, LLC 2007 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY GBV_ILN_22 GBV_ILN_70 GBV_ILN_150 GBV_ILN_4036 GBV_ILN_4307 GBV_ILN_4700 |
container_issue |
4-6 |
title_short |
Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon |
url |
https://doi.org/10.1007/s11082-007-9088-2 |
remote_bool |
false |
author2 |
Belier, B. Aassime, A. Mangeney, J. de Lustrac, A. Lourtioz, J.-M. |
author2Str |
Belier, B. Aassime, A. Mangeney, J. de Lustrac, A. Lourtioz, J.-M. |
ppnlink |
129419540 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11082-007-9088-2 |
up_date |
2024-07-03T21:37:17.746Z |
_version_ |
1803595428919246848 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC207868239X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506020848.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2007 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11082-007-9088-2</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC207868239X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11082-007-9088-2-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Gadot, F.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Infrared response of a metamaterial made of gold wires and split ring resonators deposited on silicon</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2007</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC 2007</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Periodic arrays of gold wires and split ring resonators (SRR) with a minimum feature size of 50 nm are fabricated on low-doped silicon. To our knowledge, the periodic arrangement of SRRs and wires considered in this work has not been studied in the near-infrared domain yet. For normal-incidence conditions, this metamaterial structure exhibits resonances at 70 and 170 THz (i.e., at λ ≈ 4.3 and 1.75 μm), which are identified as LC- and Mie resonances, respectively. These resonances are also observed for the SRRs alone, but the amplitude of the Mie resonance is reinforced due to the coupling between the SRRs and wires. The structure is simulated using finite-element software, while transmission and reflection measurements are performed with a Fourier transform infrared spectrometer. Numerical simulations are found to be in very good agreement with experimental characterizations, thereby showing that the Drude model used in calculations is well suited to simulate gold structures at near-infrared frequencies. Theoretical calculations predict that the metamaterial has a negative permittivity and a negative permeability near each resonance.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Metamaterial</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Negative permittivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Negative permeability</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">TeraHertz frequencies</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Belier, B.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Aassime, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mangeney, J.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">de Lustrac, A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lourtioz, J.-M.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Optical and quantum electronics</subfield><subfield code="d">Springer US, 1975</subfield><subfield code="g">39(2007), 4-6 vom: März, Seite 273-284</subfield><subfield code="w">(DE-627)129419540</subfield><subfield code="w">(DE-600)189950-8</subfield><subfield code="w">(DE-576)014796139</subfield><subfield code="x">0306-8919</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:39</subfield><subfield code="g">year:2007</subfield><subfield code="g">number:4-6</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:273-284</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11082-007-9088-2</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_70</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_150</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4036</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4307</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4700</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">39</subfield><subfield code="j">2007</subfield><subfield code="e">4-6</subfield><subfield code="c">03</subfield><subfield code="h">273-284</subfield></datafield></record></collection>
|
score |
7.4016075 |