A review of enhancing online learning using graph-based data mining techniques
Abstract In recent years, graph-based data mining (GDM) is the most accepted research due to numerous applications in a broad selection of software bug localization, computational biology, practical field, computer networking, and keyword searching. Moreover, graph data are subject to suspicions bec...
Ausführliche Beschreibung
Autor*in: |
Munshi, M. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Soft computing - Springer Berlin Heidelberg, 1997, 26(2022), 12 vom: 13. Apr., Seite 5539-5552 |
---|---|
Übergeordnetes Werk: |
volume:26 ; year:2022 ; number:12 ; day:13 ; month:04 ; pages:5539-5552 |
Links: |
---|
DOI / URN: |
10.1007/s00500-022-07034-7 |
---|
Katalog-ID: |
OLC2078735736 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2078735736 | ||
003 | DE-627 | ||
005 | 20230506024132.0 | ||
007 | tu | ||
008 | 221220s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00500-022-07034-7 |2 doi | |
035 | |a (DE-627)OLC2078735736 | ||
035 | |a (DE-He213)s00500-022-07034-7-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 11 |2 ssgn | ||
100 | 1 | |a Munshi, M. |e verfasserin |0 (orcid)0000-0003-0619-1912 |4 aut | |
245 | 1 | 0 | |a A review of enhancing online learning using graph-based data mining techniques |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 | ||
520 | |a Abstract In recent years, graph-based data mining (GDM) is the most accepted research due to numerous applications in a broad selection of software bug localization, computational biology, practical field, computer networking, and keyword searching. Moreover, graph data are subject to suspicions because of incompleteness and vagueness of data. Graph data mining of uncertain graphs is the most challenging and semantically different from correct data mining. The main problem of the GDM is mining uncertain graph data and subgraph pattern frequency. This paper discussed different techniques related to GDM, complexities, and the different size of the graph, and also investigated the dataset used for GDM, techniques of GDM like clustering analysis, and anomaly detection. To improve the performance of the online learning system, GDM is introduced. Additionally, the study algorithm is used for GDM, dataset, advantages, and disadvantages. In the end, future directions to enrich online learning based on the results of GDM are discussed. Performance metrics of different techniques such as accuracy, precision, recall, F-measure, and runtime are observed. Finally, conclude the survey with a discussion and overall performance of graph-based data mining. | ||
650 | 4 | |a Data mining | |
650 | 4 | |a Enhancing online learning | |
650 | 4 | |a Anomaly detection | |
650 | 4 | |a Cluster analysis | |
650 | 4 | |a Graph-based data mining | |
700 | 1 | |a Shrimali, Tarun |4 aut | |
700 | 1 | |a Gaur, Sanjay |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Soft computing |d Springer Berlin Heidelberg, 1997 |g 26(2022), 12 vom: 13. Apr., Seite 5539-5552 |w (DE-627)231970536 |w (DE-600)1387526-7 |w (DE-576)060238259 |x 1432-7643 |7 nnns |
773 | 1 | 8 | |g volume:26 |g year:2022 |g number:12 |g day:13 |g month:04 |g pages:5539-5552 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00500-022-07034-7 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 26 |j 2022 |e 12 |b 13 |c 04 |h 5539-5552 |
author_variant |
m m mm t s ts s g sg |
---|---|
matchkey_str |
article:14327643:2022----::rveoehnignieerigsngahaed |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s00500-022-07034-7 doi (DE-627)OLC2078735736 (DE-He213)s00500-022-07034-7-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Munshi, M. verfasserin (orcid)0000-0003-0619-1912 aut A review of enhancing online learning using graph-based data mining techniques 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract In recent years, graph-based data mining (GDM) is the most accepted research due to numerous applications in a broad selection of software bug localization, computational biology, practical field, computer networking, and keyword searching. Moreover, graph data are subject to suspicions because of incompleteness and vagueness of data. Graph data mining of uncertain graphs is the most challenging and semantically different from correct data mining. The main problem of the GDM is mining uncertain graph data and subgraph pattern frequency. This paper discussed different techniques related to GDM, complexities, and the different size of the graph, and also investigated the dataset used for GDM, techniques of GDM like clustering analysis, and anomaly detection. To improve the performance of the online learning system, GDM is introduced. Additionally, the study algorithm is used for GDM, dataset, advantages, and disadvantages. In the end, future directions to enrich online learning based on the results of GDM are discussed. Performance metrics of different techniques such as accuracy, precision, recall, F-measure, and runtime are observed. Finally, conclude the survey with a discussion and overall performance of graph-based data mining. Data mining Enhancing online learning Anomaly detection Cluster analysis Graph-based data mining Shrimali, Tarun aut Gaur, Sanjay aut Enthalten in Soft computing Springer Berlin Heidelberg, 1997 26(2022), 12 vom: 13. Apr., Seite 5539-5552 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:26 year:2022 number:12 day:13 month:04 pages:5539-5552 https://doi.org/10.1007/s00500-022-07034-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 26 2022 12 13 04 5539-5552 |
spelling |
10.1007/s00500-022-07034-7 doi (DE-627)OLC2078735736 (DE-He213)s00500-022-07034-7-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Munshi, M. verfasserin (orcid)0000-0003-0619-1912 aut A review of enhancing online learning using graph-based data mining techniques 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract In recent years, graph-based data mining (GDM) is the most accepted research due to numerous applications in a broad selection of software bug localization, computational biology, practical field, computer networking, and keyword searching. Moreover, graph data are subject to suspicions because of incompleteness and vagueness of data. Graph data mining of uncertain graphs is the most challenging and semantically different from correct data mining. The main problem of the GDM is mining uncertain graph data and subgraph pattern frequency. This paper discussed different techniques related to GDM, complexities, and the different size of the graph, and also investigated the dataset used for GDM, techniques of GDM like clustering analysis, and anomaly detection. To improve the performance of the online learning system, GDM is introduced. Additionally, the study algorithm is used for GDM, dataset, advantages, and disadvantages. In the end, future directions to enrich online learning based on the results of GDM are discussed. Performance metrics of different techniques such as accuracy, precision, recall, F-measure, and runtime are observed. Finally, conclude the survey with a discussion and overall performance of graph-based data mining. Data mining Enhancing online learning Anomaly detection Cluster analysis Graph-based data mining Shrimali, Tarun aut Gaur, Sanjay aut Enthalten in Soft computing Springer Berlin Heidelberg, 1997 26(2022), 12 vom: 13. Apr., Seite 5539-5552 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:26 year:2022 number:12 day:13 month:04 pages:5539-5552 https://doi.org/10.1007/s00500-022-07034-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 26 2022 12 13 04 5539-5552 |
allfields_unstemmed |
10.1007/s00500-022-07034-7 doi (DE-627)OLC2078735736 (DE-He213)s00500-022-07034-7-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Munshi, M. verfasserin (orcid)0000-0003-0619-1912 aut A review of enhancing online learning using graph-based data mining techniques 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract In recent years, graph-based data mining (GDM) is the most accepted research due to numerous applications in a broad selection of software bug localization, computational biology, practical field, computer networking, and keyword searching. Moreover, graph data are subject to suspicions because of incompleteness and vagueness of data. Graph data mining of uncertain graphs is the most challenging and semantically different from correct data mining. The main problem of the GDM is mining uncertain graph data and subgraph pattern frequency. This paper discussed different techniques related to GDM, complexities, and the different size of the graph, and also investigated the dataset used for GDM, techniques of GDM like clustering analysis, and anomaly detection. To improve the performance of the online learning system, GDM is introduced. Additionally, the study algorithm is used for GDM, dataset, advantages, and disadvantages. In the end, future directions to enrich online learning based on the results of GDM are discussed. Performance metrics of different techniques such as accuracy, precision, recall, F-measure, and runtime are observed. Finally, conclude the survey with a discussion and overall performance of graph-based data mining. Data mining Enhancing online learning Anomaly detection Cluster analysis Graph-based data mining Shrimali, Tarun aut Gaur, Sanjay aut Enthalten in Soft computing Springer Berlin Heidelberg, 1997 26(2022), 12 vom: 13. Apr., Seite 5539-5552 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:26 year:2022 number:12 day:13 month:04 pages:5539-5552 https://doi.org/10.1007/s00500-022-07034-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 26 2022 12 13 04 5539-5552 |
allfieldsGer |
10.1007/s00500-022-07034-7 doi (DE-627)OLC2078735736 (DE-He213)s00500-022-07034-7-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Munshi, M. verfasserin (orcid)0000-0003-0619-1912 aut A review of enhancing online learning using graph-based data mining techniques 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract In recent years, graph-based data mining (GDM) is the most accepted research due to numerous applications in a broad selection of software bug localization, computational biology, practical field, computer networking, and keyword searching. Moreover, graph data are subject to suspicions because of incompleteness and vagueness of data. Graph data mining of uncertain graphs is the most challenging and semantically different from correct data mining. The main problem of the GDM is mining uncertain graph data and subgraph pattern frequency. This paper discussed different techniques related to GDM, complexities, and the different size of the graph, and also investigated the dataset used for GDM, techniques of GDM like clustering analysis, and anomaly detection. To improve the performance of the online learning system, GDM is introduced. Additionally, the study algorithm is used for GDM, dataset, advantages, and disadvantages. In the end, future directions to enrich online learning based on the results of GDM are discussed. Performance metrics of different techniques such as accuracy, precision, recall, F-measure, and runtime are observed. Finally, conclude the survey with a discussion and overall performance of graph-based data mining. Data mining Enhancing online learning Anomaly detection Cluster analysis Graph-based data mining Shrimali, Tarun aut Gaur, Sanjay aut Enthalten in Soft computing Springer Berlin Heidelberg, 1997 26(2022), 12 vom: 13. Apr., Seite 5539-5552 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:26 year:2022 number:12 day:13 month:04 pages:5539-5552 https://doi.org/10.1007/s00500-022-07034-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 26 2022 12 13 04 5539-5552 |
allfieldsSound |
10.1007/s00500-022-07034-7 doi (DE-627)OLC2078735736 (DE-He213)s00500-022-07034-7-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Munshi, M. verfasserin (orcid)0000-0003-0619-1912 aut A review of enhancing online learning using graph-based data mining techniques 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract In recent years, graph-based data mining (GDM) is the most accepted research due to numerous applications in a broad selection of software bug localization, computational biology, practical field, computer networking, and keyword searching. Moreover, graph data are subject to suspicions because of incompleteness and vagueness of data. Graph data mining of uncertain graphs is the most challenging and semantically different from correct data mining. The main problem of the GDM is mining uncertain graph data and subgraph pattern frequency. This paper discussed different techniques related to GDM, complexities, and the different size of the graph, and also investigated the dataset used for GDM, techniques of GDM like clustering analysis, and anomaly detection. To improve the performance of the online learning system, GDM is introduced. Additionally, the study algorithm is used for GDM, dataset, advantages, and disadvantages. In the end, future directions to enrich online learning based on the results of GDM are discussed. Performance metrics of different techniques such as accuracy, precision, recall, F-measure, and runtime are observed. Finally, conclude the survey with a discussion and overall performance of graph-based data mining. Data mining Enhancing online learning Anomaly detection Cluster analysis Graph-based data mining Shrimali, Tarun aut Gaur, Sanjay aut Enthalten in Soft computing Springer Berlin Heidelberg, 1997 26(2022), 12 vom: 13. Apr., Seite 5539-5552 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:26 year:2022 number:12 day:13 month:04 pages:5539-5552 https://doi.org/10.1007/s00500-022-07034-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 26 2022 12 13 04 5539-5552 |
language |
English |
source |
Enthalten in Soft computing 26(2022), 12 vom: 13. Apr., Seite 5539-5552 volume:26 year:2022 number:12 day:13 month:04 pages:5539-5552 |
sourceStr |
Enthalten in Soft computing 26(2022), 12 vom: 13. Apr., Seite 5539-5552 volume:26 year:2022 number:12 day:13 month:04 pages:5539-5552 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Data mining Enhancing online learning Anomaly detection Cluster analysis Graph-based data mining |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Soft computing |
authorswithroles_txt_mv |
Munshi, M. @@aut@@ Shrimali, Tarun @@aut@@ Gaur, Sanjay @@aut@@ |
publishDateDaySort_date |
2022-04-13T00:00:00Z |
hierarchy_top_id |
231970536 |
dewey-sort |
14 |
id |
OLC2078735736 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2078735736</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506024132.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-022-07034-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2078735736</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00500-022-07034-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Munshi, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0619-1912</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A review of enhancing online learning using graph-based data mining techniques</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In recent years, graph-based data mining (GDM) is the most accepted research due to numerous applications in a broad selection of software bug localization, computational biology, practical field, computer networking, and keyword searching. Moreover, graph data are subject to suspicions because of incompleteness and vagueness of data. Graph data mining of uncertain graphs is the most challenging and semantically different from correct data mining. The main problem of the GDM is mining uncertain graph data and subgraph pattern frequency. This paper discussed different techniques related to GDM, complexities, and the different size of the graph, and also investigated the dataset used for GDM, techniques of GDM like clustering analysis, and anomaly detection. To improve the performance of the online learning system, GDM is introduced. Additionally, the study algorithm is used for GDM, dataset, advantages, and disadvantages. In the end, future directions to enrich online learning based on the results of GDM are discussed. Performance metrics of different techniques such as accuracy, precision, recall, F-measure, and runtime are observed. Finally, conclude the survey with a discussion and overall performance of graph-based data mining.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Enhancing online learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anomaly detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cluster analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph-based data mining</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shrimali, Tarun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gaur, Sanjay</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft computing</subfield><subfield code="d">Springer Berlin Heidelberg, 1997</subfield><subfield code="g">26(2022), 12 vom: 13. Apr., Seite 5539-5552</subfield><subfield code="w">(DE-627)231970536</subfield><subfield code="w">(DE-600)1387526-7</subfield><subfield code="w">(DE-576)060238259</subfield><subfield code="x">1432-7643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:12</subfield><subfield code="g">day:13</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:5539-5552</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00500-022-07034-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2022</subfield><subfield code="e">12</subfield><subfield code="b">13</subfield><subfield code="c">04</subfield><subfield code="h">5539-5552</subfield></datafield></record></collection>
|
author |
Munshi, M. |
spellingShingle |
Munshi, M. ddc 004 ssgn 11 misc Data mining misc Enhancing online learning misc Anomaly detection misc Cluster analysis misc Graph-based data mining A review of enhancing online learning using graph-based data mining techniques |
authorStr |
Munshi, M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)231970536 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1432-7643 |
topic_title |
004 VZ 11 ssgn A review of enhancing online learning using graph-based data mining techniques Data mining Enhancing online learning Anomaly detection Cluster analysis Graph-based data mining |
topic |
ddc 004 ssgn 11 misc Data mining misc Enhancing online learning misc Anomaly detection misc Cluster analysis misc Graph-based data mining |
topic_unstemmed |
ddc 004 ssgn 11 misc Data mining misc Enhancing online learning misc Anomaly detection misc Cluster analysis misc Graph-based data mining |
topic_browse |
ddc 004 ssgn 11 misc Data mining misc Enhancing online learning misc Anomaly detection misc Cluster analysis misc Graph-based data mining |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Soft computing |
hierarchy_parent_id |
231970536 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Soft computing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 |
title |
A review of enhancing online learning using graph-based data mining techniques |
ctrlnum |
(DE-627)OLC2078735736 (DE-He213)s00500-022-07034-7-p |
title_full |
A review of enhancing online learning using graph-based data mining techniques |
author_sort |
Munshi, M. |
journal |
Soft computing |
journalStr |
Soft computing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
5539 |
author_browse |
Munshi, M. Shrimali, Tarun Gaur, Sanjay |
container_volume |
26 |
class |
004 VZ 11 ssgn |
format_se |
Aufsätze |
author-letter |
Munshi, M. |
doi_str_mv |
10.1007/s00500-022-07034-7 |
normlink |
(ORCID)0000-0003-0619-1912 |
normlink_prefix_str_mv |
(orcid)0000-0003-0619-1912 |
dewey-full |
004 |
title_sort |
a review of enhancing online learning using graph-based data mining techniques |
title_auth |
A review of enhancing online learning using graph-based data mining techniques |
abstract |
Abstract In recent years, graph-based data mining (GDM) is the most accepted research due to numerous applications in a broad selection of software bug localization, computational biology, practical field, computer networking, and keyword searching. Moreover, graph data are subject to suspicions because of incompleteness and vagueness of data. Graph data mining of uncertain graphs is the most challenging and semantically different from correct data mining. The main problem of the GDM is mining uncertain graph data and subgraph pattern frequency. This paper discussed different techniques related to GDM, complexities, and the different size of the graph, and also investigated the dataset used for GDM, techniques of GDM like clustering analysis, and anomaly detection. To improve the performance of the online learning system, GDM is introduced. Additionally, the study algorithm is used for GDM, dataset, advantages, and disadvantages. In the end, future directions to enrich online learning based on the results of GDM are discussed. Performance metrics of different techniques such as accuracy, precision, recall, F-measure, and runtime are observed. Finally, conclude the survey with a discussion and overall performance of graph-based data mining. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
abstractGer |
Abstract In recent years, graph-based data mining (GDM) is the most accepted research due to numerous applications in a broad selection of software bug localization, computational biology, practical field, computer networking, and keyword searching. Moreover, graph data are subject to suspicions because of incompleteness and vagueness of data. Graph data mining of uncertain graphs is the most challenging and semantically different from correct data mining. The main problem of the GDM is mining uncertain graph data and subgraph pattern frequency. This paper discussed different techniques related to GDM, complexities, and the different size of the graph, and also investigated the dataset used for GDM, techniques of GDM like clustering analysis, and anomaly detection. To improve the performance of the online learning system, GDM is introduced. Additionally, the study algorithm is used for GDM, dataset, advantages, and disadvantages. In the end, future directions to enrich online learning based on the results of GDM are discussed. Performance metrics of different techniques such as accuracy, precision, recall, F-measure, and runtime are observed. Finally, conclude the survey with a discussion and overall performance of graph-based data mining. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
abstract_unstemmed |
Abstract In recent years, graph-based data mining (GDM) is the most accepted research due to numerous applications in a broad selection of software bug localization, computational biology, practical field, computer networking, and keyword searching. Moreover, graph data are subject to suspicions because of incompleteness and vagueness of data. Graph data mining of uncertain graphs is the most challenging and semantically different from correct data mining. The main problem of the GDM is mining uncertain graph data and subgraph pattern frequency. This paper discussed different techniques related to GDM, complexities, and the different size of the graph, and also investigated the dataset used for GDM, techniques of GDM like clustering analysis, and anomaly detection. To improve the performance of the online learning system, GDM is introduced. Additionally, the study algorithm is used for GDM, dataset, advantages, and disadvantages. In the end, future directions to enrich online learning based on the results of GDM are discussed. Performance metrics of different techniques such as accuracy, precision, recall, F-measure, and runtime are observed. Finally, conclude the survey with a discussion and overall performance of graph-based data mining. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
12 |
title_short |
A review of enhancing online learning using graph-based data mining techniques |
url |
https://doi.org/10.1007/s00500-022-07034-7 |
remote_bool |
false |
author2 |
Shrimali, Tarun Gaur, Sanjay |
author2Str |
Shrimali, Tarun Gaur, Sanjay |
ppnlink |
231970536 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00500-022-07034-7 |
up_date |
2024-07-03T21:52:31.156Z |
_version_ |
1803596386699051008 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2078735736</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506024132.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-022-07034-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2078735736</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00500-022-07034-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Munshi, M.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0619-1912</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A review of enhancing online learning using graph-based data mining techniques</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In recent years, graph-based data mining (GDM) is the most accepted research due to numerous applications in a broad selection of software bug localization, computational biology, practical field, computer networking, and keyword searching. Moreover, graph data are subject to suspicions because of incompleteness and vagueness of data. Graph data mining of uncertain graphs is the most challenging and semantically different from correct data mining. The main problem of the GDM is mining uncertain graph data and subgraph pattern frequency. This paper discussed different techniques related to GDM, complexities, and the different size of the graph, and also investigated the dataset used for GDM, techniques of GDM like clustering analysis, and anomaly detection. To improve the performance of the online learning system, GDM is introduced. Additionally, the study algorithm is used for GDM, dataset, advantages, and disadvantages. In the end, future directions to enrich online learning based on the results of GDM are discussed. Performance metrics of different techniques such as accuracy, precision, recall, F-measure, and runtime are observed. Finally, conclude the survey with a discussion and overall performance of graph-based data mining.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data mining</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Enhancing online learning</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Anomaly detection</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Cluster analysis</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graph-based data mining</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shrimali, Tarun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gaur, Sanjay</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft computing</subfield><subfield code="d">Springer Berlin Heidelberg, 1997</subfield><subfield code="g">26(2022), 12 vom: 13. Apr., Seite 5539-5552</subfield><subfield code="w">(DE-627)231970536</subfield><subfield code="w">(DE-600)1387526-7</subfield><subfield code="w">(DE-576)060238259</subfield><subfield code="x">1432-7643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:12</subfield><subfield code="g">day:13</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:5539-5552</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00500-022-07034-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2022</subfield><subfield code="e">12</subfield><subfield code="b">13</subfield><subfield code="c">04</subfield><subfield code="h">5539-5552</subfield></datafield></record></collection>
|
score |
7.401354 |