Local Lipschitz continuity for energy integrals with slow growth
Abstract We consider some energy integrals under slow growth, and we prove that the local minimizers are locally Lipschitz continuous. Many examples are given, either with subquadratic $$p,q-$$growth and/or anisotropic growth.
Autor*in: |
Eleuteri, Michela [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Annali di matematica pura ed applicata - Springer Berlin Heidelberg, 1858, 201(2021), 3 vom: 27. Aug., Seite 1005-1032 |
---|---|
Übergeordnetes Werk: |
volume:201 ; year:2021 ; number:3 ; day:27 ; month:08 ; pages:1005-1032 |
Links: |
---|
DOI / URN: |
10.1007/s10231-021-01147-w |
---|
Katalog-ID: |
OLC2078745138 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2078745138 | ||
003 | DE-627 | ||
005 | 20230506024311.0 | ||
007 | tu | ||
008 | 221220s2021 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10231-021-01147-w |2 doi | |
035 | |a (DE-627)OLC2078745138 | ||
035 | |a (DE-He213)s10231-021-01147-w-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Eleuteri, Michela |e verfasserin |4 aut | |
245 | 1 | 0 | |a Local Lipschitz continuity for energy integrals with slow growth |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2021 | ||
520 | |a Abstract We consider some energy integrals under slow growth, and we prove that the local minimizers are locally Lipschitz continuous. Many examples are given, either with subquadratic $$p,q-$$growth and/or anisotropic growth. | ||
650 | 4 | |a Elliptic equations | |
650 | 4 | |a Local minimizers | |
650 | 4 | |a Local Lipschitz continuity | |
650 | 4 | |a growth | |
650 | 4 | |a General growth | |
700 | 1 | |a Marcellini, Paolo |0 (orcid)0000-0002-9350-1351 |4 aut | |
700 | 1 | |a Mascolo, Elvira |4 aut | |
700 | 1 | |a Perrotta, Stefania |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Annali di matematica pura ed applicata |d Springer Berlin Heidelberg, 1858 |g 201(2021), 3 vom: 27. Aug., Seite 1005-1032 |w (DE-627)129514764 |w (DE-600)210986-4 |w (DE-576)014924102 |x 0373-3114 |7 nnns |
773 | 1 | 8 | |g volume:201 |g year:2021 |g number:3 |g day:27 |g month:08 |g pages:1005-1032 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10231-021-01147-w |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_2010 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4193 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 201 |j 2021 |e 3 |b 27 |c 08 |h 1005-1032 |
author_variant |
m e me p m pm e m em s p sp |
---|---|
matchkey_str |
article:03733114:2021----::oalpcizotniyoeegitgas |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s10231-021-01147-w doi (DE-627)OLC2078745138 (DE-He213)s10231-021-01147-w-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Eleuteri, Michela verfasserin aut Local Lipschitz continuity for energy integrals with slow growth 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract We consider some energy integrals under slow growth, and we prove that the local minimizers are locally Lipschitz continuous. Many examples are given, either with subquadratic $$p,q-$$growth and/or anisotropic growth. Elliptic equations Local minimizers Local Lipschitz continuity growth General growth Marcellini, Paolo (orcid)0000-0002-9350-1351 aut Mascolo, Elvira aut Perrotta, Stefania aut Enthalten in Annali di matematica pura ed applicata Springer Berlin Heidelberg, 1858 201(2021), 3 vom: 27. Aug., Seite 1005-1032 (DE-627)129514764 (DE-600)210986-4 (DE-576)014924102 0373-3114 nnns volume:201 year:2021 number:3 day:27 month:08 pages:1005-1032 https://doi.org/10.1007/s10231-021-01147-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4277 AR 201 2021 3 27 08 1005-1032 |
spelling |
10.1007/s10231-021-01147-w doi (DE-627)OLC2078745138 (DE-He213)s10231-021-01147-w-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Eleuteri, Michela verfasserin aut Local Lipschitz continuity for energy integrals with slow growth 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract We consider some energy integrals under slow growth, and we prove that the local minimizers are locally Lipschitz continuous. Many examples are given, either with subquadratic $$p,q-$$growth and/or anisotropic growth. Elliptic equations Local minimizers Local Lipschitz continuity growth General growth Marcellini, Paolo (orcid)0000-0002-9350-1351 aut Mascolo, Elvira aut Perrotta, Stefania aut Enthalten in Annali di matematica pura ed applicata Springer Berlin Heidelberg, 1858 201(2021), 3 vom: 27. Aug., Seite 1005-1032 (DE-627)129514764 (DE-600)210986-4 (DE-576)014924102 0373-3114 nnns volume:201 year:2021 number:3 day:27 month:08 pages:1005-1032 https://doi.org/10.1007/s10231-021-01147-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4277 AR 201 2021 3 27 08 1005-1032 |
allfields_unstemmed |
10.1007/s10231-021-01147-w doi (DE-627)OLC2078745138 (DE-He213)s10231-021-01147-w-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Eleuteri, Michela verfasserin aut Local Lipschitz continuity for energy integrals with slow growth 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract We consider some energy integrals under slow growth, and we prove that the local minimizers are locally Lipschitz continuous. Many examples are given, either with subquadratic $$p,q-$$growth and/or anisotropic growth. Elliptic equations Local minimizers Local Lipschitz continuity growth General growth Marcellini, Paolo (orcid)0000-0002-9350-1351 aut Mascolo, Elvira aut Perrotta, Stefania aut Enthalten in Annali di matematica pura ed applicata Springer Berlin Heidelberg, 1858 201(2021), 3 vom: 27. Aug., Seite 1005-1032 (DE-627)129514764 (DE-600)210986-4 (DE-576)014924102 0373-3114 nnns volume:201 year:2021 number:3 day:27 month:08 pages:1005-1032 https://doi.org/10.1007/s10231-021-01147-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4277 AR 201 2021 3 27 08 1005-1032 |
allfieldsGer |
10.1007/s10231-021-01147-w doi (DE-627)OLC2078745138 (DE-He213)s10231-021-01147-w-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Eleuteri, Michela verfasserin aut Local Lipschitz continuity for energy integrals with slow growth 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract We consider some energy integrals under slow growth, and we prove that the local minimizers are locally Lipschitz continuous. Many examples are given, either with subquadratic $$p,q-$$growth and/or anisotropic growth. Elliptic equations Local minimizers Local Lipschitz continuity growth General growth Marcellini, Paolo (orcid)0000-0002-9350-1351 aut Mascolo, Elvira aut Perrotta, Stefania aut Enthalten in Annali di matematica pura ed applicata Springer Berlin Heidelberg, 1858 201(2021), 3 vom: 27. Aug., Seite 1005-1032 (DE-627)129514764 (DE-600)210986-4 (DE-576)014924102 0373-3114 nnns volume:201 year:2021 number:3 day:27 month:08 pages:1005-1032 https://doi.org/10.1007/s10231-021-01147-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4277 AR 201 2021 3 27 08 1005-1032 |
allfieldsSound |
10.1007/s10231-021-01147-w doi (DE-627)OLC2078745138 (DE-He213)s10231-021-01147-w-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Eleuteri, Michela verfasserin aut Local Lipschitz continuity for energy integrals with slow growth 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract We consider some energy integrals under slow growth, and we prove that the local minimizers are locally Lipschitz continuous. Many examples are given, either with subquadratic $$p,q-$$growth and/or anisotropic growth. Elliptic equations Local minimizers Local Lipschitz continuity growth General growth Marcellini, Paolo (orcid)0000-0002-9350-1351 aut Mascolo, Elvira aut Perrotta, Stefania aut Enthalten in Annali di matematica pura ed applicata Springer Berlin Heidelberg, 1858 201(2021), 3 vom: 27. Aug., Seite 1005-1032 (DE-627)129514764 (DE-600)210986-4 (DE-576)014924102 0373-3114 nnns volume:201 year:2021 number:3 day:27 month:08 pages:1005-1032 https://doi.org/10.1007/s10231-021-01147-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4277 AR 201 2021 3 27 08 1005-1032 |
language |
English |
source |
Enthalten in Annali di matematica pura ed applicata 201(2021), 3 vom: 27. Aug., Seite 1005-1032 volume:201 year:2021 number:3 day:27 month:08 pages:1005-1032 |
sourceStr |
Enthalten in Annali di matematica pura ed applicata 201(2021), 3 vom: 27. Aug., Seite 1005-1032 volume:201 year:2021 number:3 day:27 month:08 pages:1005-1032 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Elliptic equations Local minimizers Local Lipschitz continuity growth General growth |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Annali di matematica pura ed applicata |
authorswithroles_txt_mv |
Eleuteri, Michela @@aut@@ Marcellini, Paolo @@aut@@ Mascolo, Elvira @@aut@@ Perrotta, Stefania @@aut@@ |
publishDateDaySort_date |
2021-08-27T00:00:00Z |
hierarchy_top_id |
129514764 |
dewey-sort |
3510 |
id |
OLC2078745138 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2078745138</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506024311.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10231-021-01147-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2078745138</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10231-021-01147-w-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Eleuteri, Michela</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Local Lipschitz continuity for energy integrals with slow growth</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We consider some energy integrals under slow growth, and we prove that the local minimizers are locally Lipschitz continuous. Many examples are given, either with subquadratic $$p,q-$$growth and/or anisotropic growth.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elliptic equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Local minimizers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Local Lipschitz continuity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">growth</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">General growth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marcellini, Paolo</subfield><subfield code="0">(orcid)0000-0002-9350-1351</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mascolo, Elvira</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Perrotta, Stefania</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annali di matematica pura ed applicata</subfield><subfield code="d">Springer Berlin Heidelberg, 1858</subfield><subfield code="g">201(2021), 3 vom: 27. Aug., Seite 1005-1032</subfield><subfield code="w">(DE-627)129514764</subfield><subfield code="w">(DE-600)210986-4</subfield><subfield code="w">(DE-576)014924102</subfield><subfield code="x">0373-3114</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:201</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:3</subfield><subfield code="g">day:27</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:1005-1032</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10231-021-01147-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">201</subfield><subfield code="j">2021</subfield><subfield code="e">3</subfield><subfield code="b">27</subfield><subfield code="c">08</subfield><subfield code="h">1005-1032</subfield></datafield></record></collection>
|
author |
Eleuteri, Michela |
spellingShingle |
Eleuteri, Michela ddc 510 ssgn 17,1 misc Elliptic equations misc Local minimizers misc Local Lipschitz continuity misc growth misc General growth Local Lipschitz continuity for energy integrals with slow growth |
authorStr |
Eleuteri, Michela |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129514764 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0373-3114 |
topic_title |
510 VZ 17,1 ssgn Local Lipschitz continuity for energy integrals with slow growth Elliptic equations Local minimizers Local Lipschitz continuity growth General growth |
topic |
ddc 510 ssgn 17,1 misc Elliptic equations misc Local minimizers misc Local Lipschitz continuity misc growth misc General growth |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Elliptic equations misc Local minimizers misc Local Lipschitz continuity misc growth misc General growth |
topic_browse |
ddc 510 ssgn 17,1 misc Elliptic equations misc Local minimizers misc Local Lipschitz continuity misc growth misc General growth |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Annali di matematica pura ed applicata |
hierarchy_parent_id |
129514764 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Annali di matematica pura ed applicata |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129514764 (DE-600)210986-4 (DE-576)014924102 |
title |
Local Lipschitz continuity for energy integrals with slow growth |
ctrlnum |
(DE-627)OLC2078745138 (DE-He213)s10231-021-01147-w-p |
title_full |
Local Lipschitz continuity for energy integrals with slow growth |
author_sort |
Eleuteri, Michela |
journal |
Annali di matematica pura ed applicata |
journalStr |
Annali di matematica pura ed applicata |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
1005 |
author_browse |
Eleuteri, Michela Marcellini, Paolo Mascolo, Elvira Perrotta, Stefania |
container_volume |
201 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Eleuteri, Michela |
doi_str_mv |
10.1007/s10231-021-01147-w |
normlink |
(ORCID)0000-0002-9350-1351 |
normlink_prefix_str_mv |
(orcid)0000-0002-9350-1351 |
dewey-full |
510 |
title_sort |
local lipschitz continuity for energy integrals with slow growth |
title_auth |
Local Lipschitz continuity for energy integrals with slow growth |
abstract |
Abstract We consider some energy integrals under slow growth, and we prove that the local minimizers are locally Lipschitz continuous. Many examples are given, either with subquadratic $$p,q-$$growth and/or anisotropic growth. © Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
abstractGer |
Abstract We consider some energy integrals under slow growth, and we prove that the local minimizers are locally Lipschitz continuous. Many examples are given, either with subquadratic $$p,q-$$growth and/or anisotropic growth. © Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
abstract_unstemmed |
Abstract We consider some energy integrals under slow growth, and we prove that the local minimizers are locally Lipschitz continuous. Many examples are given, either with subquadratic $$p,q-$$growth and/or anisotropic growth. © Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2010 GBV_ILN_2018 GBV_ILN_4126 GBV_ILN_4193 GBV_ILN_4277 |
container_issue |
3 |
title_short |
Local Lipschitz continuity for energy integrals with slow growth |
url |
https://doi.org/10.1007/s10231-021-01147-w |
remote_bool |
false |
author2 |
Marcellini, Paolo Mascolo, Elvira Perrotta, Stefania |
author2Str |
Marcellini, Paolo Mascolo, Elvira Perrotta, Stefania |
ppnlink |
129514764 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10231-021-01147-w |
up_date |
2024-07-03T21:55:36.551Z |
_version_ |
1803596581097701376 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2078745138</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506024311.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10231-021-01147-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2078745138</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10231-021-01147-w-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Eleuteri, Michela</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Local Lipschitz continuity for energy integrals with slow growth</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Fondazione Annali di Matematica Pura ed Applicata and Springer-Verlag GmbH Germany, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We consider some energy integrals under slow growth, and we prove that the local minimizers are locally Lipschitz continuous. Many examples are given, either with subquadratic $$p,q-$$growth and/or anisotropic growth.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Elliptic equations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Local minimizers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Local Lipschitz continuity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">growth</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">General growth</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Marcellini, Paolo</subfield><subfield code="0">(orcid)0000-0002-9350-1351</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Mascolo, Elvira</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Perrotta, Stefania</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Annali di matematica pura ed applicata</subfield><subfield code="d">Springer Berlin Heidelberg, 1858</subfield><subfield code="g">201(2021), 3 vom: 27. Aug., Seite 1005-1032</subfield><subfield code="w">(DE-627)129514764</subfield><subfield code="w">(DE-600)210986-4</subfield><subfield code="w">(DE-576)014924102</subfield><subfield code="x">0373-3114</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:201</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:3</subfield><subfield code="g">day:27</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:1005-1032</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10231-021-01147-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2010</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4193</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">201</subfield><subfield code="j">2021</subfield><subfield code="e">3</subfield><subfield code="b">27</subfield><subfield code="c">08</subfield><subfield code="h">1005-1032</subfield></datafield></record></collection>
|
score |
7.4018574 |