Stability in Set-Valued Optimization Problems Using Asymptotic Analysis and Epi-Convergence
Abstract We study the stability of set-valued optimization problems by using epi-convergence coupled with asymptotic analysis. To do this, we recall the notion of epi-convergence and introduce the notion of total epi-convergence for set-valued maps. We characterize them by means of epi-limits and ho...
Ausführliche Beschreibung
Autor*in: |
Hernández, Elvira [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Applied mathematics & optimization - Springer US, 1974, 86(2022), 1 vom: 07. Juni |
---|---|
Übergeordnetes Werk: |
volume:86 ; year:2022 ; number:1 ; day:07 ; month:06 |
Links: |
---|
DOI / URN: |
10.1007/s00245-022-09879-8 |
---|
Katalog-ID: |
OLC2078850985 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2078850985 | ||
003 | DE-627 | ||
005 | 20230506034325.0 | ||
007 | tu | ||
008 | 221220s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00245-022-09879-8 |2 doi | |
035 | |a (DE-627)OLC2078850985 | ||
035 | |a (DE-He213)s00245-022-09879-8-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
100 | 1 | |a Hernández, Elvira |e verfasserin |4 aut | |
245 | 1 | 0 | |a Stability in Set-Valued Optimization Problems Using Asymptotic Analysis and Epi-Convergence |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 | ||
520 | |a Abstract We study the stability of set-valued optimization problems by using epi-convergence coupled with asymptotic analysis. To do this, we recall the notion of epi-convergence and introduce the notion of total epi-convergence for set-valued maps. We characterize them by means of epi-limits and horizon epi-limits. We use these epi-limits to study the behavior of vector/set type solutions and level/colevel sets under variations of the whole data. We also introduce several stronger epi-convergence notions and use them to study the stability of solution sets and minimal solution sets. We extend and generalize various results from the literature since we deal with unbounded feasible sets and objective maps. Finally, to illustrate our main results, we apply them to various classes of set-valued maps. | ||
650 | 4 | |a Set-valued map | |
650 | 4 | |a Set-valued optimization problem | |
650 | 4 | |a Asymptotic map | |
650 | 4 | |a Epi-convergence | |
650 | 4 | |a Total epi-convergence | |
650 | 4 | |a Stability | |
700 | 1 | |a López, Rubén |0 (orcid)0000-0002-2975-7109 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied mathematics & optimization |d Springer US, 1974 |g 86(2022), 1 vom: 07. Juni |w (DE-627)129095184 |w (DE-600)7418-4 |w (DE-576)014431300 |x 0095-4616 |7 nnns |
773 | 1 | 8 | |g volume:86 |g year:2022 |g number:1 |g day:07 |g month:06 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00245-022-09879-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4027 | ||
951 | |a AR | ||
952 | |d 86 |j 2022 |e 1 |b 07 |c 06 |
author_variant |
e h eh r l rl |
---|---|
matchkey_str |
article:00954616:2022----::tbltistaudpiiainrbessnaypoiaay |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s00245-022-09879-8 doi (DE-627)OLC2078850985 (DE-He213)s00245-022-09879-8-p DE-627 ger DE-627 rakwb eng 510 VZ Hernández, Elvira verfasserin aut Stability in Set-Valued Optimization Problems Using Asymptotic Analysis and Epi-Convergence 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract We study the stability of set-valued optimization problems by using epi-convergence coupled with asymptotic analysis. To do this, we recall the notion of epi-convergence and introduce the notion of total epi-convergence for set-valued maps. We characterize them by means of epi-limits and horizon epi-limits. We use these epi-limits to study the behavior of vector/set type solutions and level/colevel sets under variations of the whole data. We also introduce several stronger epi-convergence notions and use them to study the stability of solution sets and minimal solution sets. We extend and generalize various results from the literature since we deal with unbounded feasible sets and objective maps. Finally, to illustrate our main results, we apply them to various classes of set-valued maps. Set-valued map Set-valued optimization problem Asymptotic map Epi-convergence Total epi-convergence Stability López, Rubén (orcid)0000-0002-2975-7109 aut Enthalten in Applied mathematics & optimization Springer US, 1974 86(2022), 1 vom: 07. Juni (DE-627)129095184 (DE-600)7418-4 (DE-576)014431300 0095-4616 nnns volume:86 year:2022 number:1 day:07 month:06 https://doi.org/10.1007/s00245-022-09879-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2018 GBV_ILN_4027 AR 86 2022 1 07 06 |
spelling |
10.1007/s00245-022-09879-8 doi (DE-627)OLC2078850985 (DE-He213)s00245-022-09879-8-p DE-627 ger DE-627 rakwb eng 510 VZ Hernández, Elvira verfasserin aut Stability in Set-Valued Optimization Problems Using Asymptotic Analysis and Epi-Convergence 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract We study the stability of set-valued optimization problems by using epi-convergence coupled with asymptotic analysis. To do this, we recall the notion of epi-convergence and introduce the notion of total epi-convergence for set-valued maps. We characterize them by means of epi-limits and horizon epi-limits. We use these epi-limits to study the behavior of vector/set type solutions and level/colevel sets under variations of the whole data. We also introduce several stronger epi-convergence notions and use them to study the stability of solution sets and minimal solution sets. We extend and generalize various results from the literature since we deal with unbounded feasible sets and objective maps. Finally, to illustrate our main results, we apply them to various classes of set-valued maps. Set-valued map Set-valued optimization problem Asymptotic map Epi-convergence Total epi-convergence Stability López, Rubén (orcid)0000-0002-2975-7109 aut Enthalten in Applied mathematics & optimization Springer US, 1974 86(2022), 1 vom: 07. Juni (DE-627)129095184 (DE-600)7418-4 (DE-576)014431300 0095-4616 nnns volume:86 year:2022 number:1 day:07 month:06 https://doi.org/10.1007/s00245-022-09879-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2018 GBV_ILN_4027 AR 86 2022 1 07 06 |
allfields_unstemmed |
10.1007/s00245-022-09879-8 doi (DE-627)OLC2078850985 (DE-He213)s00245-022-09879-8-p DE-627 ger DE-627 rakwb eng 510 VZ Hernández, Elvira verfasserin aut Stability in Set-Valued Optimization Problems Using Asymptotic Analysis and Epi-Convergence 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract We study the stability of set-valued optimization problems by using epi-convergence coupled with asymptotic analysis. To do this, we recall the notion of epi-convergence and introduce the notion of total epi-convergence for set-valued maps. We characterize them by means of epi-limits and horizon epi-limits. We use these epi-limits to study the behavior of vector/set type solutions and level/colevel sets under variations of the whole data. We also introduce several stronger epi-convergence notions and use them to study the stability of solution sets and minimal solution sets. We extend and generalize various results from the literature since we deal with unbounded feasible sets and objective maps. Finally, to illustrate our main results, we apply them to various classes of set-valued maps. Set-valued map Set-valued optimization problem Asymptotic map Epi-convergence Total epi-convergence Stability López, Rubén (orcid)0000-0002-2975-7109 aut Enthalten in Applied mathematics & optimization Springer US, 1974 86(2022), 1 vom: 07. Juni (DE-627)129095184 (DE-600)7418-4 (DE-576)014431300 0095-4616 nnns volume:86 year:2022 number:1 day:07 month:06 https://doi.org/10.1007/s00245-022-09879-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2018 GBV_ILN_4027 AR 86 2022 1 07 06 |
allfieldsGer |
10.1007/s00245-022-09879-8 doi (DE-627)OLC2078850985 (DE-He213)s00245-022-09879-8-p DE-627 ger DE-627 rakwb eng 510 VZ Hernández, Elvira verfasserin aut Stability in Set-Valued Optimization Problems Using Asymptotic Analysis and Epi-Convergence 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract We study the stability of set-valued optimization problems by using epi-convergence coupled with asymptotic analysis. To do this, we recall the notion of epi-convergence and introduce the notion of total epi-convergence for set-valued maps. We characterize them by means of epi-limits and horizon epi-limits. We use these epi-limits to study the behavior of vector/set type solutions and level/colevel sets under variations of the whole data. We also introduce several stronger epi-convergence notions and use them to study the stability of solution sets and minimal solution sets. We extend and generalize various results from the literature since we deal with unbounded feasible sets and objective maps. Finally, to illustrate our main results, we apply them to various classes of set-valued maps. Set-valued map Set-valued optimization problem Asymptotic map Epi-convergence Total epi-convergence Stability López, Rubén (orcid)0000-0002-2975-7109 aut Enthalten in Applied mathematics & optimization Springer US, 1974 86(2022), 1 vom: 07. Juni (DE-627)129095184 (DE-600)7418-4 (DE-576)014431300 0095-4616 nnns volume:86 year:2022 number:1 day:07 month:06 https://doi.org/10.1007/s00245-022-09879-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2018 GBV_ILN_4027 AR 86 2022 1 07 06 |
allfieldsSound |
10.1007/s00245-022-09879-8 doi (DE-627)OLC2078850985 (DE-He213)s00245-022-09879-8-p DE-627 ger DE-627 rakwb eng 510 VZ Hernández, Elvira verfasserin aut Stability in Set-Valued Optimization Problems Using Asymptotic Analysis and Epi-Convergence 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract We study the stability of set-valued optimization problems by using epi-convergence coupled with asymptotic analysis. To do this, we recall the notion of epi-convergence and introduce the notion of total epi-convergence for set-valued maps. We characterize them by means of epi-limits and horizon epi-limits. We use these epi-limits to study the behavior of vector/set type solutions and level/colevel sets under variations of the whole data. We also introduce several stronger epi-convergence notions and use them to study the stability of solution sets and minimal solution sets. We extend and generalize various results from the literature since we deal with unbounded feasible sets and objective maps. Finally, to illustrate our main results, we apply them to various classes of set-valued maps. Set-valued map Set-valued optimization problem Asymptotic map Epi-convergence Total epi-convergence Stability López, Rubén (orcid)0000-0002-2975-7109 aut Enthalten in Applied mathematics & optimization Springer US, 1974 86(2022), 1 vom: 07. Juni (DE-627)129095184 (DE-600)7418-4 (DE-576)014431300 0095-4616 nnns volume:86 year:2022 number:1 day:07 month:06 https://doi.org/10.1007/s00245-022-09879-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2018 GBV_ILN_4027 AR 86 2022 1 07 06 |
language |
English |
source |
Enthalten in Applied mathematics & optimization 86(2022), 1 vom: 07. Juni volume:86 year:2022 number:1 day:07 month:06 |
sourceStr |
Enthalten in Applied mathematics & optimization 86(2022), 1 vom: 07. Juni volume:86 year:2022 number:1 day:07 month:06 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Set-valued map Set-valued optimization problem Asymptotic map Epi-convergence Total epi-convergence Stability |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Applied mathematics & optimization |
authorswithroles_txt_mv |
Hernández, Elvira @@aut@@ López, Rubén @@aut@@ |
publishDateDaySort_date |
2022-06-07T00:00:00Z |
hierarchy_top_id |
129095184 |
dewey-sort |
3510 |
id |
OLC2078850985 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2078850985</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506034325.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00245-022-09879-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2078850985</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00245-022-09879-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hernández, Elvira</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stability in Set-Valued Optimization Problems Using Asymptotic Analysis and Epi-Convergence</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We study the stability of set-valued optimization problems by using epi-convergence coupled with asymptotic analysis. To do this, we recall the notion of epi-convergence and introduce the notion of total epi-convergence for set-valued maps. We characterize them by means of epi-limits and horizon epi-limits. We use these epi-limits to study the behavior of vector/set type solutions and level/colevel sets under variations of the whole data. We also introduce several stronger epi-convergence notions and use them to study the stability of solution sets and minimal solution sets. We extend and generalize various results from the literature since we deal with unbounded feasible sets and objective maps. Finally, to illustrate our main results, we apply them to various classes of set-valued maps.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Set-valued map</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Set-valued optimization problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymptotic map</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Epi-convergence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Total epi-convergence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stability</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">López, Rubén</subfield><subfield code="0">(orcid)0000-0002-2975-7109</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied mathematics & optimization</subfield><subfield code="d">Springer US, 1974</subfield><subfield code="g">86(2022), 1 vom: 07. Juni</subfield><subfield code="w">(DE-627)129095184</subfield><subfield code="w">(DE-600)7418-4</subfield><subfield code="w">(DE-576)014431300</subfield><subfield code="x">0095-4616</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:86</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:07</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00245-022-09879-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">86</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">07</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
author |
Hernández, Elvira |
spellingShingle |
Hernández, Elvira ddc 510 misc Set-valued map misc Set-valued optimization problem misc Asymptotic map misc Epi-convergence misc Total epi-convergence misc Stability Stability in Set-Valued Optimization Problems Using Asymptotic Analysis and Epi-Convergence |
authorStr |
Hernández, Elvira |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129095184 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0095-4616 |
topic_title |
510 VZ Stability in Set-Valued Optimization Problems Using Asymptotic Analysis and Epi-Convergence Set-valued map Set-valued optimization problem Asymptotic map Epi-convergence Total epi-convergence Stability |
topic |
ddc 510 misc Set-valued map misc Set-valued optimization problem misc Asymptotic map misc Epi-convergence misc Total epi-convergence misc Stability |
topic_unstemmed |
ddc 510 misc Set-valued map misc Set-valued optimization problem misc Asymptotic map misc Epi-convergence misc Total epi-convergence misc Stability |
topic_browse |
ddc 510 misc Set-valued map misc Set-valued optimization problem misc Asymptotic map misc Epi-convergence misc Total epi-convergence misc Stability |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Applied mathematics & optimization |
hierarchy_parent_id |
129095184 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Applied mathematics & optimization |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129095184 (DE-600)7418-4 (DE-576)014431300 |
title |
Stability in Set-Valued Optimization Problems Using Asymptotic Analysis and Epi-Convergence |
ctrlnum |
(DE-627)OLC2078850985 (DE-He213)s00245-022-09879-8-p |
title_full |
Stability in Set-Valued Optimization Problems Using Asymptotic Analysis and Epi-Convergence |
author_sort |
Hernández, Elvira |
journal |
Applied mathematics & optimization |
journalStr |
Applied mathematics & optimization |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Hernández, Elvira López, Rubén |
container_volume |
86 |
class |
510 VZ |
format_se |
Aufsätze |
author-letter |
Hernández, Elvira |
doi_str_mv |
10.1007/s00245-022-09879-8 |
normlink |
(ORCID)0000-0002-2975-7109 |
normlink_prefix_str_mv |
(orcid)0000-0002-2975-7109 |
dewey-full |
510 |
title_sort |
stability in set-valued optimization problems using asymptotic analysis and epi-convergence |
title_auth |
Stability in Set-Valued Optimization Problems Using Asymptotic Analysis and Epi-Convergence |
abstract |
Abstract We study the stability of set-valued optimization problems by using epi-convergence coupled with asymptotic analysis. To do this, we recall the notion of epi-convergence and introduce the notion of total epi-convergence for set-valued maps. We characterize them by means of epi-limits and horizon epi-limits. We use these epi-limits to study the behavior of vector/set type solutions and level/colevel sets under variations of the whole data. We also introduce several stronger epi-convergence notions and use them to study the stability of solution sets and minimal solution sets. We extend and generalize various results from the literature since we deal with unbounded feasible sets and objective maps. Finally, to illustrate our main results, we apply them to various classes of set-valued maps. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
abstractGer |
Abstract We study the stability of set-valued optimization problems by using epi-convergence coupled with asymptotic analysis. To do this, we recall the notion of epi-convergence and introduce the notion of total epi-convergence for set-valued maps. We characterize them by means of epi-limits and horizon epi-limits. We use these epi-limits to study the behavior of vector/set type solutions and level/colevel sets under variations of the whole data. We also introduce several stronger epi-convergence notions and use them to study the stability of solution sets and minimal solution sets. We extend and generalize various results from the literature since we deal with unbounded feasible sets and objective maps. Finally, to illustrate our main results, we apply them to various classes of set-valued maps. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
abstract_unstemmed |
Abstract We study the stability of set-valued optimization problems by using epi-convergence coupled with asymptotic analysis. To do this, we recall the notion of epi-convergence and introduce the notion of total epi-convergence for set-valued maps. We characterize them by means of epi-limits and horizon epi-limits. We use these epi-limits to study the behavior of vector/set type solutions and level/colevel sets under variations of the whole data. We also introduce several stronger epi-convergence notions and use them to study the stability of solution sets and minimal solution sets. We extend and generalize various results from the literature since we deal with unbounded feasible sets and objective maps. Finally, to illustrate our main results, we apply them to various classes of set-valued maps. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2018 GBV_ILN_4027 |
container_issue |
1 |
title_short |
Stability in Set-Valued Optimization Problems Using Asymptotic Analysis and Epi-Convergence |
url |
https://doi.org/10.1007/s00245-022-09879-8 |
remote_bool |
false |
author2 |
López, Rubén |
author2Str |
López, Rubén |
ppnlink |
129095184 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00245-022-09879-8 |
up_date |
2024-07-03T22:25:06.726Z |
_version_ |
1803598437261770752 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2078850985</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506034325.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00245-022-09879-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2078850985</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00245-022-09879-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Hernández, Elvira</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Stability in Set-Valued Optimization Problems Using Asymptotic Analysis and Epi-Convergence</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We study the stability of set-valued optimization problems by using epi-convergence coupled with asymptotic analysis. To do this, we recall the notion of epi-convergence and introduce the notion of total epi-convergence for set-valued maps. We characterize them by means of epi-limits and horizon epi-limits. We use these epi-limits to study the behavior of vector/set type solutions and level/colevel sets under variations of the whole data. We also introduce several stronger epi-convergence notions and use them to study the stability of solution sets and minimal solution sets. We extend and generalize various results from the literature since we deal with unbounded feasible sets and objective maps. Finally, to illustrate our main results, we apply them to various classes of set-valued maps.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Set-valued map</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Set-valued optimization problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymptotic map</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Epi-convergence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Total epi-convergence</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stability</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">López, Rubén</subfield><subfield code="0">(orcid)0000-0002-2975-7109</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied mathematics & optimization</subfield><subfield code="d">Springer US, 1974</subfield><subfield code="g">86(2022), 1 vom: 07. Juni</subfield><subfield code="w">(DE-627)129095184</subfield><subfield code="w">(DE-600)7418-4</subfield><subfield code="w">(DE-576)014431300</subfield><subfield code="x">0095-4616</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:86</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:07</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00245-022-09879-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4027</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">86</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">07</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
score |
7.4009314 |