Roles of Mn content and nanovoid defects in the plastic deformation mechanism of Fe–Mn twin crystals from molecular dynamics simulations
In this study, the roles of alloying element Mn and nanovoid defects in the deformation behaviour of Fe–Mn twin crystals are investigated with molecular dynamics (MD) tensile test simulations. The results for the supercells with various Mn contents (5–30 at% Mn) show that Mn addition can reduce the...
Ausführliche Beschreibung
Autor*in: |
Jiao, Ye [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Systematik: |
|
---|
Anmerkung: |
© The Author(s), under exclusive licence to The Materials Research Society 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of materials research - Springer International Publishing, 1986, 37(2022), 9 vom: 29. Apr., Seite 1612-1625 |
---|---|
Übergeordnetes Werk: |
volume:37 ; year:2022 ; number:9 ; day:29 ; month:04 ; pages:1612-1625 |
Links: |
---|
DOI / URN: |
10.1557/s43578-022-00556-8 |
---|
Katalog-ID: |
OLC2078867977 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2078867977 | ||
003 | DE-627 | ||
005 | 20230506030631.0 | ||
007 | tu | ||
008 | 221220s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1557/s43578-022-00556-8 |2 doi | |
035 | |a (DE-627)OLC2078867977 | ||
035 | |a (DE-He213)s43578-022-00556-8-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 670 |q VZ |
084 | |a VA 5350 |q VZ |2 rvk | ||
100 | 1 | |a Jiao, Ye |e verfasserin |4 aut | |
245 | 1 | 0 | |a Roles of Mn content and nanovoid defects in the plastic deformation mechanism of Fe–Mn twin crystals from molecular dynamics simulations |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to The Materials Research Society 2022 | ||
520 | |a In this study, the roles of alloying element Mn and nanovoid defects in the deformation behaviour of Fe–Mn twin crystals are investigated with molecular dynamics (MD) tensile test simulations. The results for the supercells with various Mn contents (5–30 at% Mn) show that Mn addition can reduce the elastic constant and improve the strength of twin crystals. In addition, with increasing Mn content, the plastic deformation mechanism transitions from martensitic transformation to dislocation slip. The mechanical properties of supercells containing 20 at% Mn, i.e. the elastic constant and critical stress of plastic deformation, decrease as the nanovoid diameter increases from 20 to 60 Å. The effect of twin boundaries (TBs) on plastic deformation is analysed in detail, revealing that TBs can effectively block the transmission of dislocations through twins, thereby improving the strength of the material. Graphical abstract Representative snapshots of the interactions between dislocations and TBs and the dislocation nucleation mechanism on the TB plane | ||
650 | 4 | |a Molecular dynamics simulations | |
650 | 4 | |a Twin boundary | |
650 | 4 | |a Nanovoid defects | |
650 | 4 | |a Dislocation slip | |
650 | 4 | |a Plastic deformation mechanism | |
700 | 1 | |a Dan, WenJiao |4 aut | |
700 | 1 | |a Xu, YongSheng |4 aut | |
700 | 1 | |a Zhang, WeiGang |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of materials research |d Springer International Publishing, 1986 |g 37(2022), 9 vom: 29. Apr., Seite 1612-1625 |w (DE-627)129206288 |w (DE-600)54876-5 |w (DE-576)01445744X |x 0884-2914 |7 nnns |
773 | 1 | 8 | |g volume:37 |g year:2022 |g number:9 |g day:29 |g month:04 |g pages:1612-1625 |
856 | 4 | 1 | |u https://doi.org/10.1557/s43578-022-00556-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_4126 | ||
936 | r | v | |a VA 5350 |
951 | |a AR | ||
952 | |d 37 |j 2022 |e 9 |b 29 |c 04 |h 1612-1625 |
author_variant |
y j yj w d wd y x yx w z wz |
---|---|
matchkey_str |
article:08842914:2022----::oeomcnetnnnvidfcsnhpatceomtomcaimfenwnrsasr |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1557/s43578-022-00556-8 doi (DE-627)OLC2078867977 (DE-He213)s43578-022-00556-8-p DE-627 ger DE-627 rakwb eng 670 VZ VA 5350 VZ rvk Jiao, Ye verfasserin aut Roles of Mn content and nanovoid defects in the plastic deformation mechanism of Fe–Mn twin crystals from molecular dynamics simulations 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to The Materials Research Society 2022 In this study, the roles of alloying element Mn and nanovoid defects in the deformation behaviour of Fe–Mn twin crystals are investigated with molecular dynamics (MD) tensile test simulations. The results for the supercells with various Mn contents (5–30 at% Mn) show that Mn addition can reduce the elastic constant and improve the strength of twin crystals. In addition, with increasing Mn content, the plastic deformation mechanism transitions from martensitic transformation to dislocation slip. The mechanical properties of supercells containing 20 at% Mn, i.e. the elastic constant and critical stress of plastic deformation, decrease as the nanovoid diameter increases from 20 to 60 Å. The effect of twin boundaries (TBs) on plastic deformation is analysed in detail, revealing that TBs can effectively block the transmission of dislocations through twins, thereby improving the strength of the material. Graphical abstract Representative snapshots of the interactions between dislocations and TBs and the dislocation nucleation mechanism on the TB plane Molecular dynamics simulations Twin boundary Nanovoid defects Dislocation slip Plastic deformation mechanism Dan, WenJiao aut Xu, YongSheng aut Zhang, WeiGang aut Enthalten in Journal of materials research Springer International Publishing, 1986 37(2022), 9 vom: 29. Apr., Seite 1612-1625 (DE-627)129206288 (DE-600)54876-5 (DE-576)01445744X 0884-2914 nnns volume:37 year:2022 number:9 day:29 month:04 pages:1612-1625 https://doi.org/10.1557/s43578-022-00556-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_4126 VA 5350 AR 37 2022 9 29 04 1612-1625 |
spelling |
10.1557/s43578-022-00556-8 doi (DE-627)OLC2078867977 (DE-He213)s43578-022-00556-8-p DE-627 ger DE-627 rakwb eng 670 VZ VA 5350 VZ rvk Jiao, Ye verfasserin aut Roles of Mn content and nanovoid defects in the plastic deformation mechanism of Fe–Mn twin crystals from molecular dynamics simulations 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to The Materials Research Society 2022 In this study, the roles of alloying element Mn and nanovoid defects in the deformation behaviour of Fe–Mn twin crystals are investigated with molecular dynamics (MD) tensile test simulations. The results for the supercells with various Mn contents (5–30 at% Mn) show that Mn addition can reduce the elastic constant and improve the strength of twin crystals. In addition, with increasing Mn content, the plastic deformation mechanism transitions from martensitic transformation to dislocation slip. The mechanical properties of supercells containing 20 at% Mn, i.e. the elastic constant and critical stress of plastic deformation, decrease as the nanovoid diameter increases from 20 to 60 Å. The effect of twin boundaries (TBs) on plastic deformation is analysed in detail, revealing that TBs can effectively block the transmission of dislocations through twins, thereby improving the strength of the material. Graphical abstract Representative snapshots of the interactions between dislocations and TBs and the dislocation nucleation mechanism on the TB plane Molecular dynamics simulations Twin boundary Nanovoid defects Dislocation slip Plastic deformation mechanism Dan, WenJiao aut Xu, YongSheng aut Zhang, WeiGang aut Enthalten in Journal of materials research Springer International Publishing, 1986 37(2022), 9 vom: 29. Apr., Seite 1612-1625 (DE-627)129206288 (DE-600)54876-5 (DE-576)01445744X 0884-2914 nnns volume:37 year:2022 number:9 day:29 month:04 pages:1612-1625 https://doi.org/10.1557/s43578-022-00556-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_4126 VA 5350 AR 37 2022 9 29 04 1612-1625 |
allfields_unstemmed |
10.1557/s43578-022-00556-8 doi (DE-627)OLC2078867977 (DE-He213)s43578-022-00556-8-p DE-627 ger DE-627 rakwb eng 670 VZ VA 5350 VZ rvk Jiao, Ye verfasserin aut Roles of Mn content and nanovoid defects in the plastic deformation mechanism of Fe–Mn twin crystals from molecular dynamics simulations 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to The Materials Research Society 2022 In this study, the roles of alloying element Mn and nanovoid defects in the deformation behaviour of Fe–Mn twin crystals are investigated with molecular dynamics (MD) tensile test simulations. The results for the supercells with various Mn contents (5–30 at% Mn) show that Mn addition can reduce the elastic constant and improve the strength of twin crystals. In addition, with increasing Mn content, the plastic deformation mechanism transitions from martensitic transformation to dislocation slip. The mechanical properties of supercells containing 20 at% Mn, i.e. the elastic constant and critical stress of plastic deformation, decrease as the nanovoid diameter increases from 20 to 60 Å. The effect of twin boundaries (TBs) on plastic deformation is analysed in detail, revealing that TBs can effectively block the transmission of dislocations through twins, thereby improving the strength of the material. Graphical abstract Representative snapshots of the interactions between dislocations and TBs and the dislocation nucleation mechanism on the TB plane Molecular dynamics simulations Twin boundary Nanovoid defects Dislocation slip Plastic deformation mechanism Dan, WenJiao aut Xu, YongSheng aut Zhang, WeiGang aut Enthalten in Journal of materials research Springer International Publishing, 1986 37(2022), 9 vom: 29. Apr., Seite 1612-1625 (DE-627)129206288 (DE-600)54876-5 (DE-576)01445744X 0884-2914 nnns volume:37 year:2022 number:9 day:29 month:04 pages:1612-1625 https://doi.org/10.1557/s43578-022-00556-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_4126 VA 5350 AR 37 2022 9 29 04 1612-1625 |
allfieldsGer |
10.1557/s43578-022-00556-8 doi (DE-627)OLC2078867977 (DE-He213)s43578-022-00556-8-p DE-627 ger DE-627 rakwb eng 670 VZ VA 5350 VZ rvk Jiao, Ye verfasserin aut Roles of Mn content and nanovoid defects in the plastic deformation mechanism of Fe–Mn twin crystals from molecular dynamics simulations 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to The Materials Research Society 2022 In this study, the roles of alloying element Mn and nanovoid defects in the deformation behaviour of Fe–Mn twin crystals are investigated with molecular dynamics (MD) tensile test simulations. The results for the supercells with various Mn contents (5–30 at% Mn) show that Mn addition can reduce the elastic constant and improve the strength of twin crystals. In addition, with increasing Mn content, the plastic deformation mechanism transitions from martensitic transformation to dislocation slip. The mechanical properties of supercells containing 20 at% Mn, i.e. the elastic constant and critical stress of plastic deformation, decrease as the nanovoid diameter increases from 20 to 60 Å. The effect of twin boundaries (TBs) on plastic deformation is analysed in detail, revealing that TBs can effectively block the transmission of dislocations through twins, thereby improving the strength of the material. Graphical abstract Representative snapshots of the interactions between dislocations and TBs and the dislocation nucleation mechanism on the TB plane Molecular dynamics simulations Twin boundary Nanovoid defects Dislocation slip Plastic deformation mechanism Dan, WenJiao aut Xu, YongSheng aut Zhang, WeiGang aut Enthalten in Journal of materials research Springer International Publishing, 1986 37(2022), 9 vom: 29. Apr., Seite 1612-1625 (DE-627)129206288 (DE-600)54876-5 (DE-576)01445744X 0884-2914 nnns volume:37 year:2022 number:9 day:29 month:04 pages:1612-1625 https://doi.org/10.1557/s43578-022-00556-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_4126 VA 5350 AR 37 2022 9 29 04 1612-1625 |
allfieldsSound |
10.1557/s43578-022-00556-8 doi (DE-627)OLC2078867977 (DE-He213)s43578-022-00556-8-p DE-627 ger DE-627 rakwb eng 670 VZ VA 5350 VZ rvk Jiao, Ye verfasserin aut Roles of Mn content and nanovoid defects in the plastic deformation mechanism of Fe–Mn twin crystals from molecular dynamics simulations 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to The Materials Research Society 2022 In this study, the roles of alloying element Mn and nanovoid defects in the deformation behaviour of Fe–Mn twin crystals are investigated with molecular dynamics (MD) tensile test simulations. The results for the supercells with various Mn contents (5–30 at% Mn) show that Mn addition can reduce the elastic constant and improve the strength of twin crystals. In addition, with increasing Mn content, the plastic deformation mechanism transitions from martensitic transformation to dislocation slip. The mechanical properties of supercells containing 20 at% Mn, i.e. the elastic constant and critical stress of plastic deformation, decrease as the nanovoid diameter increases from 20 to 60 Å. The effect of twin boundaries (TBs) on plastic deformation is analysed in detail, revealing that TBs can effectively block the transmission of dislocations through twins, thereby improving the strength of the material. Graphical abstract Representative snapshots of the interactions between dislocations and TBs and the dislocation nucleation mechanism on the TB plane Molecular dynamics simulations Twin boundary Nanovoid defects Dislocation slip Plastic deformation mechanism Dan, WenJiao aut Xu, YongSheng aut Zhang, WeiGang aut Enthalten in Journal of materials research Springer International Publishing, 1986 37(2022), 9 vom: 29. Apr., Seite 1612-1625 (DE-627)129206288 (DE-600)54876-5 (DE-576)01445744X 0884-2914 nnns volume:37 year:2022 number:9 day:29 month:04 pages:1612-1625 https://doi.org/10.1557/s43578-022-00556-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_4126 VA 5350 AR 37 2022 9 29 04 1612-1625 |
language |
English |
source |
Enthalten in Journal of materials research 37(2022), 9 vom: 29. Apr., Seite 1612-1625 volume:37 year:2022 number:9 day:29 month:04 pages:1612-1625 |
sourceStr |
Enthalten in Journal of materials research 37(2022), 9 vom: 29. Apr., Seite 1612-1625 volume:37 year:2022 number:9 day:29 month:04 pages:1612-1625 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Molecular dynamics simulations Twin boundary Nanovoid defects Dislocation slip Plastic deformation mechanism |
dewey-raw |
670 |
isfreeaccess_bool |
false |
container_title |
Journal of materials research |
authorswithroles_txt_mv |
Jiao, Ye @@aut@@ Dan, WenJiao @@aut@@ Xu, YongSheng @@aut@@ Zhang, WeiGang @@aut@@ |
publishDateDaySort_date |
2022-04-29T00:00:00Z |
hierarchy_top_id |
129206288 |
dewey-sort |
3670 |
id |
OLC2078867977 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2078867977</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506030631.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1557/s43578-022-00556-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2078867977</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s43578-022-00556-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VA 5350</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jiao, Ye</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Roles of Mn content and nanovoid defects in the plastic deformation mechanism of Fe–Mn twin crystals from molecular dynamics simulations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to The Materials Research Society 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this study, the roles of alloying element Mn and nanovoid defects in the deformation behaviour of Fe–Mn twin crystals are investigated with molecular dynamics (MD) tensile test simulations. The results for the supercells with various Mn contents (5–30 at% Mn) show that Mn addition can reduce the elastic constant and improve the strength of twin crystals. In addition, with increasing Mn content, the plastic deformation mechanism transitions from martensitic transformation to dislocation slip. The mechanical properties of supercells containing 20 at% Mn, i.e. the elastic constant and critical stress of plastic deformation, decrease as the nanovoid diameter increases from 20 to 60 Å. The effect of twin boundaries (TBs) on plastic deformation is analysed in detail, revealing that TBs can effectively block the transmission of dislocations through twins, thereby improving the strength of the material. Graphical abstract Representative snapshots of the interactions between dislocations and TBs and the dislocation nucleation mechanism on the TB plane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular dynamics simulations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Twin boundary</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanovoid defects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dislocation slip</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plastic deformation mechanism</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dan, WenJiao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, YongSheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, WeiGang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials research</subfield><subfield code="d">Springer International Publishing, 1986</subfield><subfield code="g">37(2022), 9 vom: 29. Apr., Seite 1612-1625</subfield><subfield code="w">(DE-627)129206288</subfield><subfield code="w">(DE-600)54876-5</subfield><subfield code="w">(DE-576)01445744X</subfield><subfield code="x">0884-2914</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:37</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:9</subfield><subfield code="g">day:29</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:1612-1625</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1557/s43578-022-00556-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">VA 5350</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">37</subfield><subfield code="j">2022</subfield><subfield code="e">9</subfield><subfield code="b">29</subfield><subfield code="c">04</subfield><subfield code="h">1612-1625</subfield></datafield></record></collection>
|
author |
Jiao, Ye |
spellingShingle |
Jiao, Ye ddc 670 rvk VA 5350 misc Molecular dynamics simulations misc Twin boundary misc Nanovoid defects misc Dislocation slip misc Plastic deformation mechanism Roles of Mn content and nanovoid defects in the plastic deformation mechanism of Fe–Mn twin crystals from molecular dynamics simulations |
authorStr |
Jiao, Ye |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129206288 |
format |
Article |
dewey-ones |
670 - Manufacturing |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0884-2914 |
topic_title |
670 VZ VA 5350 VZ rvk Roles of Mn content and nanovoid defects in the plastic deformation mechanism of Fe–Mn twin crystals from molecular dynamics simulations Molecular dynamics simulations Twin boundary Nanovoid defects Dislocation slip Plastic deformation mechanism |
topic |
ddc 670 rvk VA 5350 misc Molecular dynamics simulations misc Twin boundary misc Nanovoid defects misc Dislocation slip misc Plastic deformation mechanism |
topic_unstemmed |
ddc 670 rvk VA 5350 misc Molecular dynamics simulations misc Twin boundary misc Nanovoid defects misc Dislocation slip misc Plastic deformation mechanism |
topic_browse |
ddc 670 rvk VA 5350 misc Molecular dynamics simulations misc Twin boundary misc Nanovoid defects misc Dislocation slip misc Plastic deformation mechanism |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of materials research |
hierarchy_parent_id |
129206288 |
dewey-tens |
670 - Manufacturing |
hierarchy_top_title |
Journal of materials research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129206288 (DE-600)54876-5 (DE-576)01445744X |
title |
Roles of Mn content and nanovoid defects in the plastic deformation mechanism of Fe–Mn twin crystals from molecular dynamics simulations |
ctrlnum |
(DE-627)OLC2078867977 (DE-He213)s43578-022-00556-8-p |
title_full |
Roles of Mn content and nanovoid defects in the plastic deformation mechanism of Fe–Mn twin crystals from molecular dynamics simulations |
author_sort |
Jiao, Ye |
journal |
Journal of materials research |
journalStr |
Journal of materials research |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
1612 |
author_browse |
Jiao, Ye Dan, WenJiao Xu, YongSheng Zhang, WeiGang |
container_volume |
37 |
class |
670 VZ VA 5350 VZ rvk |
format_se |
Aufsätze |
author-letter |
Jiao, Ye |
doi_str_mv |
10.1557/s43578-022-00556-8 |
dewey-full |
670 |
title_sort |
roles of mn content and nanovoid defects in the plastic deformation mechanism of fe–mn twin crystals from molecular dynamics simulations |
title_auth |
Roles of Mn content and nanovoid defects in the plastic deformation mechanism of Fe–Mn twin crystals from molecular dynamics simulations |
abstract |
In this study, the roles of alloying element Mn and nanovoid defects in the deformation behaviour of Fe–Mn twin crystals are investigated with molecular dynamics (MD) tensile test simulations. The results for the supercells with various Mn contents (5–30 at% Mn) show that Mn addition can reduce the elastic constant and improve the strength of twin crystals. In addition, with increasing Mn content, the plastic deformation mechanism transitions from martensitic transformation to dislocation slip. The mechanical properties of supercells containing 20 at% Mn, i.e. the elastic constant and critical stress of plastic deformation, decrease as the nanovoid diameter increases from 20 to 60 Å. The effect of twin boundaries (TBs) on plastic deformation is analysed in detail, revealing that TBs can effectively block the transmission of dislocations through twins, thereby improving the strength of the material. Graphical abstract Representative snapshots of the interactions between dislocations and TBs and the dislocation nucleation mechanism on the TB plane © The Author(s), under exclusive licence to The Materials Research Society 2022 |
abstractGer |
In this study, the roles of alloying element Mn and nanovoid defects in the deformation behaviour of Fe–Mn twin crystals are investigated with molecular dynamics (MD) tensile test simulations. The results for the supercells with various Mn contents (5–30 at% Mn) show that Mn addition can reduce the elastic constant and improve the strength of twin crystals. In addition, with increasing Mn content, the plastic deformation mechanism transitions from martensitic transformation to dislocation slip. The mechanical properties of supercells containing 20 at% Mn, i.e. the elastic constant and critical stress of plastic deformation, decrease as the nanovoid diameter increases from 20 to 60 Å. The effect of twin boundaries (TBs) on plastic deformation is analysed in detail, revealing that TBs can effectively block the transmission of dislocations through twins, thereby improving the strength of the material. Graphical abstract Representative snapshots of the interactions between dislocations and TBs and the dislocation nucleation mechanism on the TB plane © The Author(s), under exclusive licence to The Materials Research Society 2022 |
abstract_unstemmed |
In this study, the roles of alloying element Mn and nanovoid defects in the deformation behaviour of Fe–Mn twin crystals are investigated with molecular dynamics (MD) tensile test simulations. The results for the supercells with various Mn contents (5–30 at% Mn) show that Mn addition can reduce the elastic constant and improve the strength of twin crystals. In addition, with increasing Mn content, the plastic deformation mechanism transitions from martensitic transformation to dislocation slip. The mechanical properties of supercells containing 20 at% Mn, i.e. the elastic constant and critical stress of plastic deformation, decrease as the nanovoid diameter increases from 20 to 60 Å. The effect of twin boundaries (TBs) on plastic deformation is analysed in detail, revealing that TBs can effectively block the transmission of dislocations through twins, thereby improving the strength of the material. Graphical abstract Representative snapshots of the interactions between dislocations and TBs and the dislocation nucleation mechanism on the TB plane © The Author(s), under exclusive licence to The Materials Research Society 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_4126 |
container_issue |
9 |
title_short |
Roles of Mn content and nanovoid defects in the plastic deformation mechanism of Fe–Mn twin crystals from molecular dynamics simulations |
url |
https://doi.org/10.1557/s43578-022-00556-8 |
remote_bool |
false |
author2 |
Dan, WenJiao Xu, YongSheng Zhang, WeiGang |
author2Str |
Dan, WenJiao Xu, YongSheng Zhang, WeiGang |
ppnlink |
129206288 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1557/s43578-022-00556-8 |
up_date |
2024-07-03T22:29:45.341Z |
_version_ |
1803598729419161600 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2078867977</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506030631.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1557/s43578-022-00556-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2078867977</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s43578-022-00556-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">670</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">VA 5350</subfield><subfield code="q">VZ</subfield><subfield code="2">rvk</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Jiao, Ye</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Roles of Mn content and nanovoid defects in the plastic deformation mechanism of Fe–Mn twin crystals from molecular dynamics simulations</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to The Materials Research Society 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">In this study, the roles of alloying element Mn and nanovoid defects in the deformation behaviour of Fe–Mn twin crystals are investigated with molecular dynamics (MD) tensile test simulations. The results for the supercells with various Mn contents (5–30 at% Mn) show that Mn addition can reduce the elastic constant and improve the strength of twin crystals. In addition, with increasing Mn content, the plastic deformation mechanism transitions from martensitic transformation to dislocation slip. The mechanical properties of supercells containing 20 at% Mn, i.e. the elastic constant and critical stress of plastic deformation, decrease as the nanovoid diameter increases from 20 to 60 Å. The effect of twin boundaries (TBs) on plastic deformation is analysed in detail, revealing that TBs can effectively block the transmission of dislocations through twins, thereby improving the strength of the material. Graphical abstract Representative snapshots of the interactions between dislocations and TBs and the dislocation nucleation mechanism on the TB plane</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Molecular dynamics simulations</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Twin boundary</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nanovoid defects</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dislocation slip</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Plastic deformation mechanism</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dan, WenJiao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Xu, YongSheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, WeiGang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of materials research</subfield><subfield code="d">Springer International Publishing, 1986</subfield><subfield code="g">37(2022), 9 vom: 29. Apr., Seite 1612-1625</subfield><subfield code="w">(DE-627)129206288</subfield><subfield code="w">(DE-600)54876-5</subfield><subfield code="w">(DE-576)01445744X</subfield><subfield code="x">0884-2914</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:37</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:9</subfield><subfield code="g">day:29</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:1612-1625</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1557/s43578-022-00556-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="936" ind1="r" ind2="v"><subfield code="a">VA 5350</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">37</subfield><subfield code="j">2022</subfield><subfield code="e">9</subfield><subfield code="b">29</subfield><subfield code="c">04</subfield><subfield code="h">1612-1625</subfield></datafield></record></collection>
|
score |
7.3993473 |