Hecke–Rogers type series representations for infinite products
Abstract In this paper, we give a new proof of Liu’s extension of the non-terminating $$_6\phi _5$$ summation formula. Based on this formula, some Hecke–Rogers type series representations for infinite products are derived systematically. Finally, the finite versions of two Hecke–Rogers type series i...
Ausführliche Beschreibung
Autor*in: |
Zhang, Ying [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: The Ramanujan journal - Springer US, 1997, 58(2021), 3 vom: 28. Sept., Seite 889-903 |
---|---|
Übergeordnetes Werk: |
volume:58 ; year:2021 ; number:3 ; day:28 ; month:09 ; pages:889-903 |
Links: |
---|
DOI / URN: |
10.1007/s11139-021-00501-z |
---|
Katalog-ID: |
OLC2078873268 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2078873268 | ||
003 | DE-627 | ||
005 | 20230506030722.0 | ||
007 | tu | ||
008 | 221220s2021 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11139-021-00501-z |2 doi | |
035 | |a (DE-627)OLC2078873268 | ||
035 | |a (DE-He213)s11139-021-00501-z-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 7,24 |2 ssgn | ||
100 | 1 | |a Zhang, Ying |e verfasserin |4 aut | |
245 | 1 | 0 | |a Hecke–Rogers type series representations for infinite products |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 | ||
520 | |a Abstract In this paper, we give a new proof of Liu’s extension of the non-terminating $$_6\phi _5$$ summation formula. Based on this formula, some Hecke–Rogers type series representations for infinite products are derived systematically. Finally, the finite versions of two Hecke–Rogers type series identities are also presented. As applications, two truncated series identities are presented, which imply two families of inequalities for certain partition functions. | ||
650 | 4 | |a Hecke–Rogers type series | |
650 | 4 | |a Truncated series | |
650 | 4 | |a Watson’s | |
650 | 4 | |a -Whipple transformation formula | |
650 | 4 | |a Ramanujan’s theta functions | |
700 | 1 | |a Zhang, Wenlong |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The Ramanujan journal |d Springer US, 1997 |g 58(2021), 3 vom: 28. Sept., Seite 889-903 |w (DE-627)234141301 |w (DE-600)1394097-1 |w (DE-576)100004989 |x 1382-4090 |7 nnns |
773 | 1 | 8 | |g volume:58 |g year:2021 |g number:3 |g day:28 |g month:09 |g pages:889-903 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11139-021-00501-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a SSG-OPC-ANG | ||
951 | |a AR | ||
952 | |d 58 |j 2021 |e 3 |b 28 |c 09 |h 889-903 |
author_variant |
y z yz w z wz |
---|---|
matchkey_str |
article:13824090:2021----::ekrgrtpsrerpeettoso |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s11139-021-00501-z doi (DE-627)OLC2078873268 (DE-He213)s11139-021-00501-z-p DE-627 ger DE-627 rakwb eng 510 VZ 7,24 ssgn Zhang, Ying verfasserin aut Hecke–Rogers type series representations for infinite products 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract In this paper, we give a new proof of Liu’s extension of the non-terminating $$_6\phi _5$$ summation formula. Based on this formula, some Hecke–Rogers type series representations for infinite products are derived systematically. Finally, the finite versions of two Hecke–Rogers type series identities are also presented. As applications, two truncated series identities are presented, which imply two families of inequalities for certain partition functions. Hecke–Rogers type series Truncated series Watson’s -Whipple transformation formula Ramanujan’s theta functions Zhang, Wenlong aut Enthalten in The Ramanujan journal Springer US, 1997 58(2021), 3 vom: 28. Sept., Seite 889-903 (DE-627)234141301 (DE-600)1394097-1 (DE-576)100004989 1382-4090 nnns volume:58 year:2021 number:3 day:28 month:09 pages:889-903 https://doi.org/10.1007/s11139-021-00501-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-ANG AR 58 2021 3 28 09 889-903 |
spelling |
10.1007/s11139-021-00501-z doi (DE-627)OLC2078873268 (DE-He213)s11139-021-00501-z-p DE-627 ger DE-627 rakwb eng 510 VZ 7,24 ssgn Zhang, Ying verfasserin aut Hecke–Rogers type series representations for infinite products 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract In this paper, we give a new proof of Liu’s extension of the non-terminating $$_6\phi _5$$ summation formula. Based on this formula, some Hecke–Rogers type series representations for infinite products are derived systematically. Finally, the finite versions of two Hecke–Rogers type series identities are also presented. As applications, two truncated series identities are presented, which imply two families of inequalities for certain partition functions. Hecke–Rogers type series Truncated series Watson’s -Whipple transformation formula Ramanujan’s theta functions Zhang, Wenlong aut Enthalten in The Ramanujan journal Springer US, 1997 58(2021), 3 vom: 28. Sept., Seite 889-903 (DE-627)234141301 (DE-600)1394097-1 (DE-576)100004989 1382-4090 nnns volume:58 year:2021 number:3 day:28 month:09 pages:889-903 https://doi.org/10.1007/s11139-021-00501-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-ANG AR 58 2021 3 28 09 889-903 |
allfields_unstemmed |
10.1007/s11139-021-00501-z doi (DE-627)OLC2078873268 (DE-He213)s11139-021-00501-z-p DE-627 ger DE-627 rakwb eng 510 VZ 7,24 ssgn Zhang, Ying verfasserin aut Hecke–Rogers type series representations for infinite products 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract In this paper, we give a new proof of Liu’s extension of the non-terminating $$_6\phi _5$$ summation formula. Based on this formula, some Hecke–Rogers type series representations for infinite products are derived systematically. Finally, the finite versions of two Hecke–Rogers type series identities are also presented. As applications, two truncated series identities are presented, which imply two families of inequalities for certain partition functions. Hecke–Rogers type series Truncated series Watson’s -Whipple transformation formula Ramanujan’s theta functions Zhang, Wenlong aut Enthalten in The Ramanujan journal Springer US, 1997 58(2021), 3 vom: 28. Sept., Seite 889-903 (DE-627)234141301 (DE-600)1394097-1 (DE-576)100004989 1382-4090 nnns volume:58 year:2021 number:3 day:28 month:09 pages:889-903 https://doi.org/10.1007/s11139-021-00501-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-ANG AR 58 2021 3 28 09 889-903 |
allfieldsGer |
10.1007/s11139-021-00501-z doi (DE-627)OLC2078873268 (DE-He213)s11139-021-00501-z-p DE-627 ger DE-627 rakwb eng 510 VZ 7,24 ssgn Zhang, Ying verfasserin aut Hecke–Rogers type series representations for infinite products 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract In this paper, we give a new proof of Liu’s extension of the non-terminating $$_6\phi _5$$ summation formula. Based on this formula, some Hecke–Rogers type series representations for infinite products are derived systematically. Finally, the finite versions of two Hecke–Rogers type series identities are also presented. As applications, two truncated series identities are presented, which imply two families of inequalities for certain partition functions. Hecke–Rogers type series Truncated series Watson’s -Whipple transformation formula Ramanujan’s theta functions Zhang, Wenlong aut Enthalten in The Ramanujan journal Springer US, 1997 58(2021), 3 vom: 28. Sept., Seite 889-903 (DE-627)234141301 (DE-600)1394097-1 (DE-576)100004989 1382-4090 nnns volume:58 year:2021 number:3 day:28 month:09 pages:889-903 https://doi.org/10.1007/s11139-021-00501-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-ANG AR 58 2021 3 28 09 889-903 |
allfieldsSound |
10.1007/s11139-021-00501-z doi (DE-627)OLC2078873268 (DE-He213)s11139-021-00501-z-p DE-627 ger DE-627 rakwb eng 510 VZ 7,24 ssgn Zhang, Ying verfasserin aut Hecke–Rogers type series representations for infinite products 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract In this paper, we give a new proof of Liu’s extension of the non-terminating $$_6\phi _5$$ summation formula. Based on this formula, some Hecke–Rogers type series representations for infinite products are derived systematically. Finally, the finite versions of two Hecke–Rogers type series identities are also presented. As applications, two truncated series identities are presented, which imply two families of inequalities for certain partition functions. Hecke–Rogers type series Truncated series Watson’s -Whipple transformation formula Ramanujan’s theta functions Zhang, Wenlong aut Enthalten in The Ramanujan journal Springer US, 1997 58(2021), 3 vom: 28. Sept., Seite 889-903 (DE-627)234141301 (DE-600)1394097-1 (DE-576)100004989 1382-4090 nnns volume:58 year:2021 number:3 day:28 month:09 pages:889-903 https://doi.org/10.1007/s11139-021-00501-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-ANG AR 58 2021 3 28 09 889-903 |
language |
English |
source |
Enthalten in The Ramanujan journal 58(2021), 3 vom: 28. Sept., Seite 889-903 volume:58 year:2021 number:3 day:28 month:09 pages:889-903 |
sourceStr |
Enthalten in The Ramanujan journal 58(2021), 3 vom: 28. Sept., Seite 889-903 volume:58 year:2021 number:3 day:28 month:09 pages:889-903 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Hecke–Rogers type series Truncated series Watson’s -Whipple transformation formula Ramanujan’s theta functions |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
The Ramanujan journal |
authorswithroles_txt_mv |
Zhang, Ying @@aut@@ Zhang, Wenlong @@aut@@ |
publishDateDaySort_date |
2021-09-28T00:00:00Z |
hierarchy_top_id |
234141301 |
dewey-sort |
3510 |
id |
OLC2078873268 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2078873268</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506030722.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11139-021-00501-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2078873268</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11139-021-00501-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">7,24</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Ying</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hecke–Rogers type series representations for infinite products</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we give a new proof of Liu’s extension of the non-terminating $$_6\phi _5$$ summation formula. Based on this formula, some Hecke–Rogers type series representations for infinite products are derived systematically. Finally, the finite versions of two Hecke–Rogers type series identities are also presented. As applications, two truncated series identities are presented, which imply two families of inequalities for certain partition functions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hecke–Rogers type series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Truncated series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Watson’s</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-Whipple transformation formula</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ramanujan’s theta functions</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Wenlong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The Ramanujan journal</subfield><subfield code="d">Springer US, 1997</subfield><subfield code="g">58(2021), 3 vom: 28. Sept., Seite 889-903</subfield><subfield code="w">(DE-627)234141301</subfield><subfield code="w">(DE-600)1394097-1</subfield><subfield code="w">(DE-576)100004989</subfield><subfield code="x">1382-4090</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:58</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:3</subfield><subfield code="g">day:28</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:889-903</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11139-021-00501-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ANG</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">58</subfield><subfield code="j">2021</subfield><subfield code="e">3</subfield><subfield code="b">28</subfield><subfield code="c">09</subfield><subfield code="h">889-903</subfield></datafield></record></collection>
|
author |
Zhang, Ying |
spellingShingle |
Zhang, Ying ddc 510 ssgn 7,24 misc Hecke–Rogers type series misc Truncated series misc Watson’s misc -Whipple transformation formula misc Ramanujan’s theta functions Hecke–Rogers type series representations for infinite products |
authorStr |
Zhang, Ying |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)234141301 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1382-4090 |
topic_title |
510 VZ 7,24 ssgn Hecke–Rogers type series representations for infinite products Hecke–Rogers type series Truncated series Watson’s -Whipple transformation formula Ramanujan’s theta functions |
topic |
ddc 510 ssgn 7,24 misc Hecke–Rogers type series misc Truncated series misc Watson’s misc -Whipple transformation formula misc Ramanujan’s theta functions |
topic_unstemmed |
ddc 510 ssgn 7,24 misc Hecke–Rogers type series misc Truncated series misc Watson’s misc -Whipple transformation formula misc Ramanujan’s theta functions |
topic_browse |
ddc 510 ssgn 7,24 misc Hecke–Rogers type series misc Truncated series misc Watson’s misc -Whipple transformation formula misc Ramanujan’s theta functions |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
The Ramanujan journal |
hierarchy_parent_id |
234141301 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
The Ramanujan journal |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)234141301 (DE-600)1394097-1 (DE-576)100004989 |
title |
Hecke–Rogers type series representations for infinite products |
ctrlnum |
(DE-627)OLC2078873268 (DE-He213)s11139-021-00501-z-p |
title_full |
Hecke–Rogers type series representations for infinite products |
author_sort |
Zhang, Ying |
journal |
The Ramanujan journal |
journalStr |
The Ramanujan journal |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
889 |
author_browse |
Zhang, Ying Zhang, Wenlong |
container_volume |
58 |
class |
510 VZ 7,24 ssgn |
format_se |
Aufsätze |
author-letter |
Zhang, Ying |
doi_str_mv |
10.1007/s11139-021-00501-z |
dewey-full |
510 |
title_sort |
hecke–rogers type series representations for infinite products |
title_auth |
Hecke–Rogers type series representations for infinite products |
abstract |
Abstract In this paper, we give a new proof of Liu’s extension of the non-terminating $$_6\phi _5$$ summation formula. Based on this formula, some Hecke–Rogers type series representations for infinite products are derived systematically. Finally, the finite versions of two Hecke–Rogers type series identities are also presented. As applications, two truncated series identities are presented, which imply two families of inequalities for certain partition functions. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
abstractGer |
Abstract In this paper, we give a new proof of Liu’s extension of the non-terminating $$_6\phi _5$$ summation formula. Based on this formula, some Hecke–Rogers type series representations for infinite products are derived systematically. Finally, the finite versions of two Hecke–Rogers type series identities are also presented. As applications, two truncated series identities are presented, which imply two families of inequalities for certain partition functions. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
abstract_unstemmed |
Abstract In this paper, we give a new proof of Liu’s extension of the non-terminating $$_6\phi _5$$ summation formula. Based on this formula, some Hecke–Rogers type series representations for infinite products are derived systematically. Finally, the finite versions of two Hecke–Rogers type series identities are also presented. As applications, two truncated series identities are presented, which imply two families of inequalities for certain partition functions. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT SSG-OPC-ANG |
container_issue |
3 |
title_short |
Hecke–Rogers type series representations for infinite products |
url |
https://doi.org/10.1007/s11139-021-00501-z |
remote_bool |
false |
author2 |
Zhang, Wenlong |
author2Str |
Zhang, Wenlong |
ppnlink |
234141301 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11139-021-00501-z |
up_date |
2024-07-03T22:31:13.225Z |
_version_ |
1803598821563826176 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2078873268</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506030722.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11139-021-00501-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2078873268</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11139-021-00501-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">7,24</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Ying</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Hecke–Rogers type series representations for infinite products</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we give a new proof of Liu’s extension of the non-terminating $$_6\phi _5$$ summation formula. Based on this formula, some Hecke–Rogers type series representations for infinite products are derived systematically. Finally, the finite versions of two Hecke–Rogers type series identities are also presented. As applications, two truncated series identities are presented, which imply two families of inequalities for certain partition functions.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hecke–Rogers type series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Truncated series</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Watson’s</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">-Whipple transformation formula</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ramanujan’s theta functions</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Wenlong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The Ramanujan journal</subfield><subfield code="d">Springer US, 1997</subfield><subfield code="g">58(2021), 3 vom: 28. Sept., Seite 889-903</subfield><subfield code="w">(DE-627)234141301</subfield><subfield code="w">(DE-600)1394097-1</subfield><subfield code="w">(DE-576)100004989</subfield><subfield code="x">1382-4090</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:58</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:3</subfield><subfield code="g">day:28</subfield><subfield code="g">month:09</subfield><subfield code="g">pages:889-903</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11139-021-00501-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-ANG</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">58</subfield><subfield code="j">2021</subfield><subfield code="e">3</subfield><subfield code="b">28</subfield><subfield code="c">09</subfield><subfield code="h">889-903</subfield></datafield></record></collection>
|
score |
7.4019136 |