TSMSA: a 2DSPP algorithm with multi-strategy rectangle selection
Abstract The two-dimension strip packing problem (2DSPP) is an NP-hard combinatorial optimization problem, and it has a wide range of applications. The order in which the rectangles are placed in the strip is the key to solving the 2DSPP. In this paper, the corner increment multi-level scoring strat...
Ausführliche Beschreibung
Autor*in: |
Guo, Ping [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: The journal of supercomputing - Springer US, 1987, 78(2022), 10 vom: 28. Feb., Seite 12242-12277 |
---|---|
Übergeordnetes Werk: |
volume:78 ; year:2022 ; number:10 ; day:28 ; month:02 ; pages:12242-12277 |
Links: |
---|
DOI / URN: |
10.1007/s11227-022-04350-5 |
---|
Katalog-ID: |
OLC2078873381 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2078873381 | ||
003 | DE-627 | ||
005 | 20230506030723.0 | ||
007 | tu | ||
008 | 221220s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11227-022-04350-5 |2 doi | |
035 | |a (DE-627)OLC2078873381 | ||
035 | |a (DE-He213)s11227-022-04350-5-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |a 620 |q VZ |
100 | 1 | |a Guo, Ping |e verfasserin |0 (orcid)0000-0002-5239-8896 |4 aut | |
245 | 1 | 0 | |a TSMSA: a 2DSPP algorithm with multi-strategy rectangle selection |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 | ||
520 | |a Abstract The two-dimension strip packing problem (2DSPP) is an NP-hard combinatorial optimization problem, and it has a wide range of applications. The order in which the rectangles are placed in the strip is the key to solving the 2DSPP. In this paper, the corner increment multi-level scoring strategy and the two-step selection strategy are proposed to make the selection of rectangles more reasonable. The hierarchical construction strategy is used to improve the constructive heuristic algorithm to expand the search space of the rectangle selection. Based on this, this paper proposes a multi-strategy rectangle selection algorithm TSMSA for solving 2DSPP. Comparing experiments with 7 excellent algorithms for solving 2DSPP on 737 instances of the benchmark dataset shows that the instance number of the optimal solution obtained by TSMSA is 1.05~2.9 times that of the other 7 algorithms. | ||
650 | 4 | |a Strip packing problem | |
650 | 4 | |a Combinatorial optimization | |
650 | 4 | |a Heuristic algorithm | |
650 | 4 | |a Rectangle selection strategy | |
700 | 1 | |a Jiang, Minliang |4 aut | |
773 | 0 | 8 | |i Enthalten in |t The journal of supercomputing |d Springer US, 1987 |g 78(2022), 10 vom: 28. Feb., Seite 12242-12277 |w (DE-627)13046466X |w (DE-600)740510-8 |w (DE-576)018667775 |x 0920-8542 |7 nnns |
773 | 1 | 8 | |g volume:78 |g year:2022 |g number:10 |g day:28 |g month:02 |g pages:12242-12277 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11227-022-04350-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-MAT | ||
951 | |a AR | ||
952 | |d 78 |j 2022 |e 10 |b 28 |c 02 |h 12242-12277 |
author_variant |
p g pg m j mj |
---|---|
matchkey_str |
article:09208542:2022----::ssadpagrtmihutsrtgr |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s11227-022-04350-5 doi (DE-627)OLC2078873381 (DE-He213)s11227-022-04350-5-p DE-627 ger DE-627 rakwb eng 004 620 VZ Guo, Ping verfasserin (orcid)0000-0002-5239-8896 aut TSMSA: a 2DSPP algorithm with multi-strategy rectangle selection 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract The two-dimension strip packing problem (2DSPP) is an NP-hard combinatorial optimization problem, and it has a wide range of applications. The order in which the rectangles are placed in the strip is the key to solving the 2DSPP. In this paper, the corner increment multi-level scoring strategy and the two-step selection strategy are proposed to make the selection of rectangles more reasonable. The hierarchical construction strategy is used to improve the constructive heuristic algorithm to expand the search space of the rectangle selection. Based on this, this paper proposes a multi-strategy rectangle selection algorithm TSMSA for solving 2DSPP. Comparing experiments with 7 excellent algorithms for solving 2DSPP on 737 instances of the benchmark dataset shows that the instance number of the optimal solution obtained by TSMSA is 1.05~2.9 times that of the other 7 algorithms. Strip packing problem Combinatorial optimization Heuristic algorithm Rectangle selection strategy Jiang, Minliang aut Enthalten in The journal of supercomputing Springer US, 1987 78(2022), 10 vom: 28. Feb., Seite 12242-12277 (DE-627)13046466X (DE-600)740510-8 (DE-576)018667775 0920-8542 nnns volume:78 year:2022 number:10 day:28 month:02 pages:12242-12277 https://doi.org/10.1007/s11227-022-04350-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT AR 78 2022 10 28 02 12242-12277 |
spelling |
10.1007/s11227-022-04350-5 doi (DE-627)OLC2078873381 (DE-He213)s11227-022-04350-5-p DE-627 ger DE-627 rakwb eng 004 620 VZ Guo, Ping verfasserin (orcid)0000-0002-5239-8896 aut TSMSA: a 2DSPP algorithm with multi-strategy rectangle selection 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract The two-dimension strip packing problem (2DSPP) is an NP-hard combinatorial optimization problem, and it has a wide range of applications. The order in which the rectangles are placed in the strip is the key to solving the 2DSPP. In this paper, the corner increment multi-level scoring strategy and the two-step selection strategy are proposed to make the selection of rectangles more reasonable. The hierarchical construction strategy is used to improve the constructive heuristic algorithm to expand the search space of the rectangle selection. Based on this, this paper proposes a multi-strategy rectangle selection algorithm TSMSA for solving 2DSPP. Comparing experiments with 7 excellent algorithms for solving 2DSPP on 737 instances of the benchmark dataset shows that the instance number of the optimal solution obtained by TSMSA is 1.05~2.9 times that of the other 7 algorithms. Strip packing problem Combinatorial optimization Heuristic algorithm Rectangle selection strategy Jiang, Minliang aut Enthalten in The journal of supercomputing Springer US, 1987 78(2022), 10 vom: 28. Feb., Seite 12242-12277 (DE-627)13046466X (DE-600)740510-8 (DE-576)018667775 0920-8542 nnns volume:78 year:2022 number:10 day:28 month:02 pages:12242-12277 https://doi.org/10.1007/s11227-022-04350-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT AR 78 2022 10 28 02 12242-12277 |
allfields_unstemmed |
10.1007/s11227-022-04350-5 doi (DE-627)OLC2078873381 (DE-He213)s11227-022-04350-5-p DE-627 ger DE-627 rakwb eng 004 620 VZ Guo, Ping verfasserin (orcid)0000-0002-5239-8896 aut TSMSA: a 2DSPP algorithm with multi-strategy rectangle selection 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract The two-dimension strip packing problem (2DSPP) is an NP-hard combinatorial optimization problem, and it has a wide range of applications. The order in which the rectangles are placed in the strip is the key to solving the 2DSPP. In this paper, the corner increment multi-level scoring strategy and the two-step selection strategy are proposed to make the selection of rectangles more reasonable. The hierarchical construction strategy is used to improve the constructive heuristic algorithm to expand the search space of the rectangle selection. Based on this, this paper proposes a multi-strategy rectangle selection algorithm TSMSA for solving 2DSPP. Comparing experiments with 7 excellent algorithms for solving 2DSPP on 737 instances of the benchmark dataset shows that the instance number of the optimal solution obtained by TSMSA is 1.05~2.9 times that of the other 7 algorithms. Strip packing problem Combinatorial optimization Heuristic algorithm Rectangle selection strategy Jiang, Minliang aut Enthalten in The journal of supercomputing Springer US, 1987 78(2022), 10 vom: 28. Feb., Seite 12242-12277 (DE-627)13046466X (DE-600)740510-8 (DE-576)018667775 0920-8542 nnns volume:78 year:2022 number:10 day:28 month:02 pages:12242-12277 https://doi.org/10.1007/s11227-022-04350-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT AR 78 2022 10 28 02 12242-12277 |
allfieldsGer |
10.1007/s11227-022-04350-5 doi (DE-627)OLC2078873381 (DE-He213)s11227-022-04350-5-p DE-627 ger DE-627 rakwb eng 004 620 VZ Guo, Ping verfasserin (orcid)0000-0002-5239-8896 aut TSMSA: a 2DSPP algorithm with multi-strategy rectangle selection 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract The two-dimension strip packing problem (2DSPP) is an NP-hard combinatorial optimization problem, and it has a wide range of applications. The order in which the rectangles are placed in the strip is the key to solving the 2DSPP. In this paper, the corner increment multi-level scoring strategy and the two-step selection strategy are proposed to make the selection of rectangles more reasonable. The hierarchical construction strategy is used to improve the constructive heuristic algorithm to expand the search space of the rectangle selection. Based on this, this paper proposes a multi-strategy rectangle selection algorithm TSMSA for solving 2DSPP. Comparing experiments with 7 excellent algorithms for solving 2DSPP on 737 instances of the benchmark dataset shows that the instance number of the optimal solution obtained by TSMSA is 1.05~2.9 times that of the other 7 algorithms. Strip packing problem Combinatorial optimization Heuristic algorithm Rectangle selection strategy Jiang, Minliang aut Enthalten in The journal of supercomputing Springer US, 1987 78(2022), 10 vom: 28. Feb., Seite 12242-12277 (DE-627)13046466X (DE-600)740510-8 (DE-576)018667775 0920-8542 nnns volume:78 year:2022 number:10 day:28 month:02 pages:12242-12277 https://doi.org/10.1007/s11227-022-04350-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT AR 78 2022 10 28 02 12242-12277 |
allfieldsSound |
10.1007/s11227-022-04350-5 doi (DE-627)OLC2078873381 (DE-He213)s11227-022-04350-5-p DE-627 ger DE-627 rakwb eng 004 620 VZ Guo, Ping verfasserin (orcid)0000-0002-5239-8896 aut TSMSA: a 2DSPP algorithm with multi-strategy rectangle selection 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract The two-dimension strip packing problem (2DSPP) is an NP-hard combinatorial optimization problem, and it has a wide range of applications. The order in which the rectangles are placed in the strip is the key to solving the 2DSPP. In this paper, the corner increment multi-level scoring strategy and the two-step selection strategy are proposed to make the selection of rectangles more reasonable. The hierarchical construction strategy is used to improve the constructive heuristic algorithm to expand the search space of the rectangle selection. Based on this, this paper proposes a multi-strategy rectangle selection algorithm TSMSA for solving 2DSPP. Comparing experiments with 7 excellent algorithms for solving 2DSPP on 737 instances of the benchmark dataset shows that the instance number of the optimal solution obtained by TSMSA is 1.05~2.9 times that of the other 7 algorithms. Strip packing problem Combinatorial optimization Heuristic algorithm Rectangle selection strategy Jiang, Minliang aut Enthalten in The journal of supercomputing Springer US, 1987 78(2022), 10 vom: 28. Feb., Seite 12242-12277 (DE-627)13046466X (DE-600)740510-8 (DE-576)018667775 0920-8542 nnns volume:78 year:2022 number:10 day:28 month:02 pages:12242-12277 https://doi.org/10.1007/s11227-022-04350-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT AR 78 2022 10 28 02 12242-12277 |
language |
English |
source |
Enthalten in The journal of supercomputing 78(2022), 10 vom: 28. Feb., Seite 12242-12277 volume:78 year:2022 number:10 day:28 month:02 pages:12242-12277 |
sourceStr |
Enthalten in The journal of supercomputing 78(2022), 10 vom: 28. Feb., Seite 12242-12277 volume:78 year:2022 number:10 day:28 month:02 pages:12242-12277 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Strip packing problem Combinatorial optimization Heuristic algorithm Rectangle selection strategy |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
The journal of supercomputing |
authorswithroles_txt_mv |
Guo, Ping @@aut@@ Jiang, Minliang @@aut@@ |
publishDateDaySort_date |
2022-02-28T00:00:00Z |
hierarchy_top_id |
13046466X |
dewey-sort |
14 |
id |
OLC2078873381 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2078873381</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506030723.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11227-022-04350-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2078873381</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11227-022-04350-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guo, Ping</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-5239-8896</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">TSMSA: a 2DSPP algorithm with multi-strategy rectangle selection</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The two-dimension strip packing problem (2DSPP) is an NP-hard combinatorial optimization problem, and it has a wide range of applications. The order in which the rectangles are placed in the strip is the key to solving the 2DSPP. In this paper, the corner increment multi-level scoring strategy and the two-step selection strategy are proposed to make the selection of rectangles more reasonable. The hierarchical construction strategy is used to improve the constructive heuristic algorithm to expand the search space of the rectangle selection. Based on this, this paper proposes a multi-strategy rectangle selection algorithm TSMSA for solving 2DSPP. Comparing experiments with 7 excellent algorithms for solving 2DSPP on 737 instances of the benchmark dataset shows that the instance number of the optimal solution obtained by TSMSA is 1.05~2.9 times that of the other 7 algorithms.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strip packing problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heuristic algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rectangle selection strategy</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Minliang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The journal of supercomputing</subfield><subfield code="d">Springer US, 1987</subfield><subfield code="g">78(2022), 10 vom: 28. Feb., Seite 12242-12277</subfield><subfield code="w">(DE-627)13046466X</subfield><subfield code="w">(DE-600)740510-8</subfield><subfield code="w">(DE-576)018667775</subfield><subfield code="x">0920-8542</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:78</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:10</subfield><subfield code="g">day:28</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:12242-12277</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11227-022-04350-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">78</subfield><subfield code="j">2022</subfield><subfield code="e">10</subfield><subfield code="b">28</subfield><subfield code="c">02</subfield><subfield code="h">12242-12277</subfield></datafield></record></collection>
|
author |
Guo, Ping |
spellingShingle |
Guo, Ping ddc 004 misc Strip packing problem misc Combinatorial optimization misc Heuristic algorithm misc Rectangle selection strategy TSMSA: a 2DSPP algorithm with multi-strategy rectangle selection |
authorStr |
Guo, Ping |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)13046466X |
format |
Article |
dewey-ones |
004 - Data processing & computer science 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0920-8542 |
topic_title |
004 620 VZ TSMSA: a 2DSPP algorithm with multi-strategy rectangle selection Strip packing problem Combinatorial optimization Heuristic algorithm Rectangle selection strategy |
topic |
ddc 004 misc Strip packing problem misc Combinatorial optimization misc Heuristic algorithm misc Rectangle selection strategy |
topic_unstemmed |
ddc 004 misc Strip packing problem misc Combinatorial optimization misc Heuristic algorithm misc Rectangle selection strategy |
topic_browse |
ddc 004 misc Strip packing problem misc Combinatorial optimization misc Heuristic algorithm misc Rectangle selection strategy |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
The journal of supercomputing |
hierarchy_parent_id |
13046466X |
dewey-tens |
000 - Computer science, knowledge & systems 620 - Engineering |
hierarchy_top_title |
The journal of supercomputing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)13046466X (DE-600)740510-8 (DE-576)018667775 |
title |
TSMSA: a 2DSPP algorithm with multi-strategy rectangle selection |
ctrlnum |
(DE-627)OLC2078873381 (DE-He213)s11227-022-04350-5-p |
title_full |
TSMSA: a 2DSPP algorithm with multi-strategy rectangle selection |
author_sort |
Guo, Ping |
journal |
The journal of supercomputing |
journalStr |
The journal of supercomputing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works 600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
12242 |
author_browse |
Guo, Ping Jiang, Minliang |
container_volume |
78 |
class |
004 620 VZ |
format_se |
Aufsätze |
author-letter |
Guo, Ping |
doi_str_mv |
10.1007/s11227-022-04350-5 |
normlink |
(ORCID)0000-0002-5239-8896 |
normlink_prefix_str_mv |
(orcid)0000-0002-5239-8896 |
dewey-full |
004 620 |
title_sort |
tsmsa: a 2dspp algorithm with multi-strategy rectangle selection |
title_auth |
TSMSA: a 2DSPP algorithm with multi-strategy rectangle selection |
abstract |
Abstract The two-dimension strip packing problem (2DSPP) is an NP-hard combinatorial optimization problem, and it has a wide range of applications. The order in which the rectangles are placed in the strip is the key to solving the 2DSPP. In this paper, the corner increment multi-level scoring strategy and the two-step selection strategy are proposed to make the selection of rectangles more reasonable. The hierarchical construction strategy is used to improve the constructive heuristic algorithm to expand the search space of the rectangle selection. Based on this, this paper proposes a multi-strategy rectangle selection algorithm TSMSA for solving 2DSPP. Comparing experiments with 7 excellent algorithms for solving 2DSPP on 737 instances of the benchmark dataset shows that the instance number of the optimal solution obtained by TSMSA is 1.05~2.9 times that of the other 7 algorithms. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
abstractGer |
Abstract The two-dimension strip packing problem (2DSPP) is an NP-hard combinatorial optimization problem, and it has a wide range of applications. The order in which the rectangles are placed in the strip is the key to solving the 2DSPP. In this paper, the corner increment multi-level scoring strategy and the two-step selection strategy are proposed to make the selection of rectangles more reasonable. The hierarchical construction strategy is used to improve the constructive heuristic algorithm to expand the search space of the rectangle selection. Based on this, this paper proposes a multi-strategy rectangle selection algorithm TSMSA for solving 2DSPP. Comparing experiments with 7 excellent algorithms for solving 2DSPP on 737 instances of the benchmark dataset shows that the instance number of the optimal solution obtained by TSMSA is 1.05~2.9 times that of the other 7 algorithms. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
abstract_unstemmed |
Abstract The two-dimension strip packing problem (2DSPP) is an NP-hard combinatorial optimization problem, and it has a wide range of applications. The order in which the rectangles are placed in the strip is the key to solving the 2DSPP. In this paper, the corner increment multi-level scoring strategy and the two-step selection strategy are proposed to make the selection of rectangles more reasonable. The hierarchical construction strategy is used to improve the constructive heuristic algorithm to expand the search space of the rectangle selection. Based on this, this paper proposes a multi-strategy rectangle selection algorithm TSMSA for solving 2DSPP. Comparing experiments with 7 excellent algorithms for solving 2DSPP on 737 instances of the benchmark dataset shows that the instance number of the optimal solution obtained by TSMSA is 1.05~2.9 times that of the other 7 algorithms. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-MAT |
container_issue |
10 |
title_short |
TSMSA: a 2DSPP algorithm with multi-strategy rectangle selection |
url |
https://doi.org/10.1007/s11227-022-04350-5 |
remote_bool |
false |
author2 |
Jiang, Minliang |
author2Str |
Jiang, Minliang |
ppnlink |
13046466X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11227-022-04350-5 |
up_date |
2024-07-03T22:31:15.380Z |
_version_ |
1803598823825604608 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2078873381</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506030723.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11227-022-04350-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2078873381</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11227-022-04350-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Guo, Ping</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-5239-8896</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">TSMSA: a 2DSPP algorithm with multi-strategy rectangle selection</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The two-dimension strip packing problem (2DSPP) is an NP-hard combinatorial optimization problem, and it has a wide range of applications. The order in which the rectangles are placed in the strip is the key to solving the 2DSPP. In this paper, the corner increment multi-level scoring strategy and the two-step selection strategy are proposed to make the selection of rectangles more reasonable. The hierarchical construction strategy is used to improve the constructive heuristic algorithm to expand the search space of the rectangle selection. Based on this, this paper proposes a multi-strategy rectangle selection algorithm TSMSA for solving 2DSPP. Comparing experiments with 7 excellent algorithms for solving 2DSPP on 737 instances of the benchmark dataset shows that the instance number of the optimal solution obtained by TSMSA is 1.05~2.9 times that of the other 7 algorithms.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Strip packing problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heuristic algorithm</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Rectangle selection strategy</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Jiang, Minliang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">The journal of supercomputing</subfield><subfield code="d">Springer US, 1987</subfield><subfield code="g">78(2022), 10 vom: 28. Feb., Seite 12242-12277</subfield><subfield code="w">(DE-627)13046466X</subfield><subfield code="w">(DE-600)740510-8</subfield><subfield code="w">(DE-576)018667775</subfield><subfield code="x">0920-8542</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:78</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:10</subfield><subfield code="g">day:28</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:12242-12277</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11227-022-04350-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">78</subfield><subfield code="j">2022</subfield><subfield code="e">10</subfield><subfield code="b">28</subfield><subfield code="c">02</subfield><subfield code="h">12242-12277</subfield></datafield></record></collection>
|
score |
7.400936 |