Proper Holomorphic Mappings Between n-generalized Hartogs Triangles
Abstract In this paper, we first introduce the notion of n-generalized Hartogs triangles. Then, we characterize proper holomorphic mappings between some of these domains, and describe their automorphism groups.
Autor*in: |
Rong, Feng [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer-Verlag GmbH Germany & The Editorial Office of AMS 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Acta mathematica sinica - Springer Berlin Heidelberg, 1985, 38(2022), 6 vom: Juni, Seite 1002-1014 |
---|---|
Übergeordnetes Werk: |
volume:38 ; year:2022 ; number:6 ; month:06 ; pages:1002-1014 |
Links: |
---|
DOI / URN: |
10.1007/s10114-022-1422-x |
---|
Katalog-ID: |
OLC2078985953 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2078985953 | ||
003 | DE-627 | ||
005 | 20230506032633.0 | ||
007 | tu | ||
008 | 221220s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10114-022-1422-x |2 doi | |
035 | |a (DE-627)OLC2078985953 | ||
035 | |a (DE-He213)s10114-022-1422-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Rong, Feng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Proper Holomorphic Mappings Between n-generalized Hartogs Triangles |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer-Verlag GmbH Germany & The Editorial Office of AMS 2022 | ||
520 | |a Abstract In this paper, we first introduce the notion of n-generalized Hartogs triangles. Then, we characterize proper holomorphic mappings between some of these domains, and describe their automorphism groups. | ||
650 | 4 | |a Proper holomorphic mapping | |
650 | 4 | |a generalized Hartogs triangle | |
650 | 4 | |a automorphism group | |
700 | 1 | |a Zhang, Shuo |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Acta mathematica sinica |d Springer Berlin Heidelberg, 1985 |g 38(2022), 6 vom: Juni, Seite 1002-1014 |w (DE-627)129236772 |w (DE-600)58083-1 |w (DE-576)091206189 |x 1000-9574 |7 nnns |
773 | 1 | 8 | |g volume:38 |g year:2022 |g number:6 |g month:06 |g pages:1002-1014 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10114-022-1422-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_2018 | ||
951 | |a AR | ||
952 | |d 38 |j 2022 |e 6 |c 06 |h 1002-1014 |
author_variant |
f r fr s z sz |
---|---|
matchkey_str |
article:10009574:2022----::rprooopimpigbtengnrlzd |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s10114-022-1422-x doi (DE-627)OLC2078985953 (DE-He213)s10114-022-1422-x-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Rong, Feng verfasserin aut Proper Holomorphic Mappings Between n-generalized Hartogs Triangles 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany & The Editorial Office of AMS 2022 Abstract In this paper, we first introduce the notion of n-generalized Hartogs triangles. Then, we characterize proper holomorphic mappings between some of these domains, and describe their automorphism groups. Proper holomorphic mapping generalized Hartogs triangle automorphism group Zhang, Shuo aut Enthalten in Acta mathematica sinica Springer Berlin Heidelberg, 1985 38(2022), 6 vom: Juni, Seite 1002-1014 (DE-627)129236772 (DE-600)58083-1 (DE-576)091206189 1000-9574 nnns volume:38 year:2022 number:6 month:06 pages:1002-1014 https://doi.org/10.1007/s10114-022-1422-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2018 AR 38 2022 6 06 1002-1014 |
spelling |
10.1007/s10114-022-1422-x doi (DE-627)OLC2078985953 (DE-He213)s10114-022-1422-x-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Rong, Feng verfasserin aut Proper Holomorphic Mappings Between n-generalized Hartogs Triangles 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany & The Editorial Office of AMS 2022 Abstract In this paper, we first introduce the notion of n-generalized Hartogs triangles. Then, we characterize proper holomorphic mappings between some of these domains, and describe their automorphism groups. Proper holomorphic mapping generalized Hartogs triangle automorphism group Zhang, Shuo aut Enthalten in Acta mathematica sinica Springer Berlin Heidelberg, 1985 38(2022), 6 vom: Juni, Seite 1002-1014 (DE-627)129236772 (DE-600)58083-1 (DE-576)091206189 1000-9574 nnns volume:38 year:2022 number:6 month:06 pages:1002-1014 https://doi.org/10.1007/s10114-022-1422-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2018 AR 38 2022 6 06 1002-1014 |
allfields_unstemmed |
10.1007/s10114-022-1422-x doi (DE-627)OLC2078985953 (DE-He213)s10114-022-1422-x-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Rong, Feng verfasserin aut Proper Holomorphic Mappings Between n-generalized Hartogs Triangles 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany & The Editorial Office of AMS 2022 Abstract In this paper, we first introduce the notion of n-generalized Hartogs triangles. Then, we characterize proper holomorphic mappings between some of these domains, and describe their automorphism groups. Proper holomorphic mapping generalized Hartogs triangle automorphism group Zhang, Shuo aut Enthalten in Acta mathematica sinica Springer Berlin Heidelberg, 1985 38(2022), 6 vom: Juni, Seite 1002-1014 (DE-627)129236772 (DE-600)58083-1 (DE-576)091206189 1000-9574 nnns volume:38 year:2022 number:6 month:06 pages:1002-1014 https://doi.org/10.1007/s10114-022-1422-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2018 AR 38 2022 6 06 1002-1014 |
allfieldsGer |
10.1007/s10114-022-1422-x doi (DE-627)OLC2078985953 (DE-He213)s10114-022-1422-x-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Rong, Feng verfasserin aut Proper Holomorphic Mappings Between n-generalized Hartogs Triangles 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany & The Editorial Office of AMS 2022 Abstract In this paper, we first introduce the notion of n-generalized Hartogs triangles. Then, we characterize proper holomorphic mappings between some of these domains, and describe their automorphism groups. Proper holomorphic mapping generalized Hartogs triangle automorphism group Zhang, Shuo aut Enthalten in Acta mathematica sinica Springer Berlin Heidelberg, 1985 38(2022), 6 vom: Juni, Seite 1002-1014 (DE-627)129236772 (DE-600)58083-1 (DE-576)091206189 1000-9574 nnns volume:38 year:2022 number:6 month:06 pages:1002-1014 https://doi.org/10.1007/s10114-022-1422-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2018 AR 38 2022 6 06 1002-1014 |
allfieldsSound |
10.1007/s10114-022-1422-x doi (DE-627)OLC2078985953 (DE-He213)s10114-022-1422-x-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ 17,1 ssgn Rong, Feng verfasserin aut Proper Holomorphic Mappings Between n-generalized Hartogs Triangles 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer-Verlag GmbH Germany & The Editorial Office of AMS 2022 Abstract In this paper, we first introduce the notion of n-generalized Hartogs triangles. Then, we characterize proper holomorphic mappings between some of these domains, and describe their automorphism groups. Proper holomorphic mapping generalized Hartogs triangle automorphism group Zhang, Shuo aut Enthalten in Acta mathematica sinica Springer Berlin Heidelberg, 1985 38(2022), 6 vom: Juni, Seite 1002-1014 (DE-627)129236772 (DE-600)58083-1 (DE-576)091206189 1000-9574 nnns volume:38 year:2022 number:6 month:06 pages:1002-1014 https://doi.org/10.1007/s10114-022-1422-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2018 AR 38 2022 6 06 1002-1014 |
language |
English |
source |
Enthalten in Acta mathematica sinica 38(2022), 6 vom: Juni, Seite 1002-1014 volume:38 year:2022 number:6 month:06 pages:1002-1014 |
sourceStr |
Enthalten in Acta mathematica sinica 38(2022), 6 vom: Juni, Seite 1002-1014 volume:38 year:2022 number:6 month:06 pages:1002-1014 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Proper holomorphic mapping generalized Hartogs triangle automorphism group |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Acta mathematica sinica |
authorswithroles_txt_mv |
Rong, Feng @@aut@@ Zhang, Shuo @@aut@@ |
publishDateDaySort_date |
2022-06-01T00:00:00Z |
hierarchy_top_id |
129236772 |
dewey-sort |
3510 |
id |
OLC2078985953 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2078985953</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506032633.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10114-022-1422-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2078985953</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10114-022-1422-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rong, Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Proper Holomorphic Mappings Between n-generalized Hartogs Triangles</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany & The Editorial Office of AMS 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we first introduce the notion of n-generalized Hartogs triangles. Then, we characterize proper holomorphic mappings between some of these domains, and describe their automorphism groups.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proper holomorphic mapping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">generalized Hartogs triangle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">automorphism group</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Shuo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta mathematica sinica</subfield><subfield code="d">Springer Berlin Heidelberg, 1985</subfield><subfield code="g">38(2022), 6 vom: Juni, Seite 1002-1014</subfield><subfield code="w">(DE-627)129236772</subfield><subfield code="w">(DE-600)58083-1</subfield><subfield code="w">(DE-576)091206189</subfield><subfield code="x">1000-9574</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:38</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:6</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:1002-1014</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10114-022-1422-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">38</subfield><subfield code="j">2022</subfield><subfield code="e">6</subfield><subfield code="c">06</subfield><subfield code="h">1002-1014</subfield></datafield></record></collection>
|
author |
Rong, Feng |
spellingShingle |
Rong, Feng ddc 510 ssgn 17,1 misc Proper holomorphic mapping misc generalized Hartogs triangle misc automorphism group Proper Holomorphic Mappings Between n-generalized Hartogs Triangles |
authorStr |
Rong, Feng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129236772 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1000-9574 |
topic_title |
510 VZ 17,1 ssgn Proper Holomorphic Mappings Between n-generalized Hartogs Triangles Proper holomorphic mapping generalized Hartogs triangle automorphism group |
topic |
ddc 510 ssgn 17,1 misc Proper holomorphic mapping misc generalized Hartogs triangle misc automorphism group |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Proper holomorphic mapping misc generalized Hartogs triangle misc automorphism group |
topic_browse |
ddc 510 ssgn 17,1 misc Proper holomorphic mapping misc generalized Hartogs triangle misc automorphism group |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Acta mathematica sinica |
hierarchy_parent_id |
129236772 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Acta mathematica sinica |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129236772 (DE-600)58083-1 (DE-576)091206189 |
title |
Proper Holomorphic Mappings Between n-generalized Hartogs Triangles |
ctrlnum |
(DE-627)OLC2078985953 (DE-He213)s10114-022-1422-x-p |
title_full |
Proper Holomorphic Mappings Between n-generalized Hartogs Triangles |
author_sort |
Rong, Feng |
journal |
Acta mathematica sinica |
journalStr |
Acta mathematica sinica |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
1002 |
author_browse |
Rong, Feng Zhang, Shuo |
container_volume |
38 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Rong, Feng |
doi_str_mv |
10.1007/s10114-022-1422-x |
dewey-full |
510 |
title_sort |
proper holomorphic mappings between n-generalized hartogs triangles |
title_auth |
Proper Holomorphic Mappings Between n-generalized Hartogs Triangles |
abstract |
Abstract In this paper, we first introduce the notion of n-generalized Hartogs triangles. Then, we characterize proper holomorphic mappings between some of these domains, and describe their automorphism groups. © Springer-Verlag GmbH Germany & The Editorial Office of AMS 2022 |
abstractGer |
Abstract In this paper, we first introduce the notion of n-generalized Hartogs triangles. Then, we characterize proper holomorphic mappings between some of these domains, and describe their automorphism groups. © Springer-Verlag GmbH Germany & The Editorial Office of AMS 2022 |
abstract_unstemmed |
Abstract In this paper, we first introduce the notion of n-generalized Hartogs triangles. Then, we characterize proper holomorphic mappings between some of these domains, and describe their automorphism groups. © Springer-Verlag GmbH Germany & The Editorial Office of AMS 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT GBV_ILN_2018 |
container_issue |
6 |
title_short |
Proper Holomorphic Mappings Between n-generalized Hartogs Triangles |
url |
https://doi.org/10.1007/s10114-022-1422-x |
remote_bool |
false |
author2 |
Zhang, Shuo |
author2Str |
Zhang, Shuo |
ppnlink |
129236772 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10114-022-1422-x |
up_date |
2024-07-03T23:01:47.025Z |
_version_ |
1803600744442494976 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2078985953</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506032633.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10114-022-1422-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2078985953</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10114-022-1422-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Rong, Feng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Proper Holomorphic Mappings Between n-generalized Hartogs Triangles</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer-Verlag GmbH Germany & The Editorial Office of AMS 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we first introduce the notion of n-generalized Hartogs triangles. Then, we characterize proper holomorphic mappings between some of these domains, and describe their automorphism groups.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Proper holomorphic mapping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">generalized Hartogs triangle</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">automorphism group</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Shuo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Acta mathematica sinica</subfield><subfield code="d">Springer Berlin Heidelberg, 1985</subfield><subfield code="g">38(2022), 6 vom: Juni, Seite 1002-1014</subfield><subfield code="w">(DE-627)129236772</subfield><subfield code="w">(DE-600)58083-1</subfield><subfield code="w">(DE-576)091206189</subfield><subfield code="x">1000-9574</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:38</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:6</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:1002-1014</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10114-022-1422-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">38</subfield><subfield code="j">2022</subfield><subfield code="e">6</subfield><subfield code="c">06</subfield><subfield code="h">1002-1014</subfield></datafield></record></collection>
|
score |
7.400772 |