On the lifetimes of two-dimensional droplets on smooth wetting patterns
Abstract We study the evolution and lifetime of droplets evaporating on a smooth chemical pattern, which is characterised by a spatially varying contact angle. We formulate a model that combines the evaporation rate of the droplet for a given volume with the static stability of the droplet as the vo...
Ausführliche Beschreibung
Autor*in: |
Haynes, Matthew [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s) 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of engineering mathematics - Springer Netherlands, 1967, 135(2022), 1 vom: 28. Juni |
---|---|
Übergeordnetes Werk: |
volume:135 ; year:2022 ; number:1 ; day:28 ; month:06 |
Links: |
---|
DOI / URN: |
10.1007/s10665-022-10218-7 |
---|
Katalog-ID: |
OLC2079031333 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2079031333 | ||
003 | DE-627 | ||
005 | 20230506061219.0 | ||
007 | tu | ||
008 | 221220s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10665-022-10218-7 |2 doi | |
035 | |a (DE-627)OLC2079031333 | ||
035 | |a (DE-He213)s10665-022-10218-7-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
100 | 1 | |a Haynes, Matthew |e verfasserin |0 (orcid)0000-0003-0707-3651 |4 aut | |
245 | 1 | 0 | |a On the lifetimes of two-dimensional droplets on smooth wetting patterns |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s) 2022 | ||
520 | |a Abstract We study the evolution and lifetime of droplets evaporating on a smooth chemical pattern, which is characterised by a spatially varying contact angle. We formulate a model that combines the evaporation rate of the droplet for a given volume with the static stability of the droplet as the volume changes in time quasi-statically. We derive an exact equation for the evaporation rate that is studied analytically under the limiting cases of nearly neutral wetting and highly hydrophilic conditions. We find that the evaporation rate of the droplet is highly dependent on the size and shape of the fictitious infinity where a far-field boundary conditions needs to be applied. We also study how the droplet’s lifetime depends on the averaged contact angle and strength $$\varepsilon $$ of the chemical pattern, observing that the lifetime of the droplet is maximised for a droplet with average contact angle $$\pi /2$$ and with $$\varepsilon \lesssim 0.1$$. | ||
650 | 4 | |a Evaporation rate | |
650 | 4 | |a Sessile droplets | |
650 | 4 | |a Wetting phenomena | |
700 | 1 | |a Pradas, Marc |0 (orcid)0000-0002-8814-2403 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of engineering mathematics |d Springer Netherlands, 1967 |g 135(2022), 1 vom: 28. Juni |w (DE-627)129595748 |w (DE-600)240689-5 |w (DE-576)015088766 |x 0022-0833 |7 nnns |
773 | 1 | 8 | |g volume:135 |g year:2022 |g number:1 |g day:28 |g month:06 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10665-022-10218-7 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
951 | |a AR | ||
952 | |d 135 |j 2022 |e 1 |b 28 |c 06 |
author_variant |
m h mh m p mp |
---|---|
matchkey_str |
article:00220833:2022----::nhlftmsfwdmninlrpesnmo |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s10665-022-10218-7 doi (DE-627)OLC2079031333 (DE-He213)s10665-022-10218-7-p DE-627 ger DE-627 rakwb eng 510 VZ Haynes, Matthew verfasserin (orcid)0000-0003-0707-3651 aut On the lifetimes of two-dimensional droplets on smooth wetting patterns 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2022 Abstract We study the evolution and lifetime of droplets evaporating on a smooth chemical pattern, which is characterised by a spatially varying contact angle. We formulate a model that combines the evaporation rate of the droplet for a given volume with the static stability of the droplet as the volume changes in time quasi-statically. We derive an exact equation for the evaporation rate that is studied analytically under the limiting cases of nearly neutral wetting and highly hydrophilic conditions. We find that the evaporation rate of the droplet is highly dependent on the size and shape of the fictitious infinity where a far-field boundary conditions needs to be applied. We also study how the droplet’s lifetime depends on the averaged contact angle and strength $$\varepsilon $$ of the chemical pattern, observing that the lifetime of the droplet is maximised for a droplet with average contact angle $$\pi /2$$ and with $$\varepsilon \lesssim 0.1$$. Evaporation rate Sessile droplets Wetting phenomena Pradas, Marc (orcid)0000-0002-8814-2403 aut Enthalten in Journal of engineering mathematics Springer Netherlands, 1967 135(2022), 1 vom: 28. Juni (DE-627)129595748 (DE-600)240689-5 (DE-576)015088766 0022-0833 nnns volume:135 year:2022 number:1 day:28 month:06 https://doi.org/10.1007/s10665-022-10218-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 135 2022 1 28 06 |
spelling |
10.1007/s10665-022-10218-7 doi (DE-627)OLC2079031333 (DE-He213)s10665-022-10218-7-p DE-627 ger DE-627 rakwb eng 510 VZ Haynes, Matthew verfasserin (orcid)0000-0003-0707-3651 aut On the lifetimes of two-dimensional droplets on smooth wetting patterns 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2022 Abstract We study the evolution and lifetime of droplets evaporating on a smooth chemical pattern, which is characterised by a spatially varying contact angle. We formulate a model that combines the evaporation rate of the droplet for a given volume with the static stability of the droplet as the volume changes in time quasi-statically. We derive an exact equation for the evaporation rate that is studied analytically under the limiting cases of nearly neutral wetting and highly hydrophilic conditions. We find that the evaporation rate of the droplet is highly dependent on the size and shape of the fictitious infinity where a far-field boundary conditions needs to be applied. We also study how the droplet’s lifetime depends on the averaged contact angle and strength $$\varepsilon $$ of the chemical pattern, observing that the lifetime of the droplet is maximised for a droplet with average contact angle $$\pi /2$$ and with $$\varepsilon \lesssim 0.1$$. Evaporation rate Sessile droplets Wetting phenomena Pradas, Marc (orcid)0000-0002-8814-2403 aut Enthalten in Journal of engineering mathematics Springer Netherlands, 1967 135(2022), 1 vom: 28. Juni (DE-627)129595748 (DE-600)240689-5 (DE-576)015088766 0022-0833 nnns volume:135 year:2022 number:1 day:28 month:06 https://doi.org/10.1007/s10665-022-10218-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 135 2022 1 28 06 |
allfields_unstemmed |
10.1007/s10665-022-10218-7 doi (DE-627)OLC2079031333 (DE-He213)s10665-022-10218-7-p DE-627 ger DE-627 rakwb eng 510 VZ Haynes, Matthew verfasserin (orcid)0000-0003-0707-3651 aut On the lifetimes of two-dimensional droplets on smooth wetting patterns 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2022 Abstract We study the evolution and lifetime of droplets evaporating on a smooth chemical pattern, which is characterised by a spatially varying contact angle. We formulate a model that combines the evaporation rate of the droplet for a given volume with the static stability of the droplet as the volume changes in time quasi-statically. We derive an exact equation for the evaporation rate that is studied analytically under the limiting cases of nearly neutral wetting and highly hydrophilic conditions. We find that the evaporation rate of the droplet is highly dependent on the size and shape of the fictitious infinity where a far-field boundary conditions needs to be applied. We also study how the droplet’s lifetime depends on the averaged contact angle and strength $$\varepsilon $$ of the chemical pattern, observing that the lifetime of the droplet is maximised for a droplet with average contact angle $$\pi /2$$ and with $$\varepsilon \lesssim 0.1$$. Evaporation rate Sessile droplets Wetting phenomena Pradas, Marc (orcid)0000-0002-8814-2403 aut Enthalten in Journal of engineering mathematics Springer Netherlands, 1967 135(2022), 1 vom: 28. Juni (DE-627)129595748 (DE-600)240689-5 (DE-576)015088766 0022-0833 nnns volume:135 year:2022 number:1 day:28 month:06 https://doi.org/10.1007/s10665-022-10218-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 135 2022 1 28 06 |
allfieldsGer |
10.1007/s10665-022-10218-7 doi (DE-627)OLC2079031333 (DE-He213)s10665-022-10218-7-p DE-627 ger DE-627 rakwb eng 510 VZ Haynes, Matthew verfasserin (orcid)0000-0003-0707-3651 aut On the lifetimes of two-dimensional droplets on smooth wetting patterns 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2022 Abstract We study the evolution and lifetime of droplets evaporating on a smooth chemical pattern, which is characterised by a spatially varying contact angle. We formulate a model that combines the evaporation rate of the droplet for a given volume with the static stability of the droplet as the volume changes in time quasi-statically. We derive an exact equation for the evaporation rate that is studied analytically under the limiting cases of nearly neutral wetting and highly hydrophilic conditions. We find that the evaporation rate of the droplet is highly dependent on the size and shape of the fictitious infinity where a far-field boundary conditions needs to be applied. We also study how the droplet’s lifetime depends on the averaged contact angle and strength $$\varepsilon $$ of the chemical pattern, observing that the lifetime of the droplet is maximised for a droplet with average contact angle $$\pi /2$$ and with $$\varepsilon \lesssim 0.1$$. Evaporation rate Sessile droplets Wetting phenomena Pradas, Marc (orcid)0000-0002-8814-2403 aut Enthalten in Journal of engineering mathematics Springer Netherlands, 1967 135(2022), 1 vom: 28. Juni (DE-627)129595748 (DE-600)240689-5 (DE-576)015088766 0022-0833 nnns volume:135 year:2022 number:1 day:28 month:06 https://doi.org/10.1007/s10665-022-10218-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 135 2022 1 28 06 |
allfieldsSound |
10.1007/s10665-022-10218-7 doi (DE-627)OLC2079031333 (DE-He213)s10665-022-10218-7-p DE-627 ger DE-627 rakwb eng 510 VZ Haynes, Matthew verfasserin (orcid)0000-0003-0707-3651 aut On the lifetimes of two-dimensional droplets on smooth wetting patterns 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s) 2022 Abstract We study the evolution and lifetime of droplets evaporating on a smooth chemical pattern, which is characterised by a spatially varying contact angle. We formulate a model that combines the evaporation rate of the droplet for a given volume with the static stability of the droplet as the volume changes in time quasi-statically. We derive an exact equation for the evaporation rate that is studied analytically under the limiting cases of nearly neutral wetting and highly hydrophilic conditions. We find that the evaporation rate of the droplet is highly dependent on the size and shape of the fictitious infinity where a far-field boundary conditions needs to be applied. We also study how the droplet’s lifetime depends on the averaged contact angle and strength $$\varepsilon $$ of the chemical pattern, observing that the lifetime of the droplet is maximised for a droplet with average contact angle $$\pi /2$$ and with $$\varepsilon \lesssim 0.1$$. Evaporation rate Sessile droplets Wetting phenomena Pradas, Marc (orcid)0000-0002-8814-2403 aut Enthalten in Journal of engineering mathematics Springer Netherlands, 1967 135(2022), 1 vom: 28. Juni (DE-627)129595748 (DE-600)240689-5 (DE-576)015088766 0022-0833 nnns volume:135 year:2022 number:1 day:28 month:06 https://doi.org/10.1007/s10665-022-10218-7 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 135 2022 1 28 06 |
language |
English |
source |
Enthalten in Journal of engineering mathematics 135(2022), 1 vom: 28. Juni volume:135 year:2022 number:1 day:28 month:06 |
sourceStr |
Enthalten in Journal of engineering mathematics 135(2022), 1 vom: 28. Juni volume:135 year:2022 number:1 day:28 month:06 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Evaporation rate Sessile droplets Wetting phenomena |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of engineering mathematics |
authorswithroles_txt_mv |
Haynes, Matthew @@aut@@ Pradas, Marc @@aut@@ |
publishDateDaySort_date |
2022-06-28T00:00:00Z |
hierarchy_top_id |
129595748 |
dewey-sort |
3510 |
id |
OLC2079031333 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2079031333</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506061219.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10665-022-10218-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2079031333</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10665-022-10218-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Haynes, Matthew</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0707-3651</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the lifetimes of two-dimensional droplets on smooth wetting patterns</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We study the evolution and lifetime of droplets evaporating on a smooth chemical pattern, which is characterised by a spatially varying contact angle. We formulate a model that combines the evaporation rate of the droplet for a given volume with the static stability of the droplet as the volume changes in time quasi-statically. We derive an exact equation for the evaporation rate that is studied analytically under the limiting cases of nearly neutral wetting and highly hydrophilic conditions. We find that the evaporation rate of the droplet is highly dependent on the size and shape of the fictitious infinity where a far-field boundary conditions needs to be applied. We also study how the droplet’s lifetime depends on the averaged contact angle and strength $$\varepsilon $$ of the chemical pattern, observing that the lifetime of the droplet is maximised for a droplet with average contact angle $$\pi /2$$ and with $$\varepsilon \lesssim 0.1$$.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evaporation rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sessile droplets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wetting phenomena</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pradas, Marc</subfield><subfield code="0">(orcid)0000-0002-8814-2403</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of engineering mathematics</subfield><subfield code="d">Springer Netherlands, 1967</subfield><subfield code="g">135(2022), 1 vom: 28. Juni</subfield><subfield code="w">(DE-627)129595748</subfield><subfield code="w">(DE-600)240689-5</subfield><subfield code="w">(DE-576)015088766</subfield><subfield code="x">0022-0833</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:135</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:28</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10665-022-10218-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">135</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">28</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
author |
Haynes, Matthew |
spellingShingle |
Haynes, Matthew ddc 510 misc Evaporation rate misc Sessile droplets misc Wetting phenomena On the lifetimes of two-dimensional droplets on smooth wetting patterns |
authorStr |
Haynes, Matthew |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129595748 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0022-0833 |
topic_title |
510 VZ On the lifetimes of two-dimensional droplets on smooth wetting patterns Evaporation rate Sessile droplets Wetting phenomena |
topic |
ddc 510 misc Evaporation rate misc Sessile droplets misc Wetting phenomena |
topic_unstemmed |
ddc 510 misc Evaporation rate misc Sessile droplets misc Wetting phenomena |
topic_browse |
ddc 510 misc Evaporation rate misc Sessile droplets misc Wetting phenomena |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of engineering mathematics |
hierarchy_parent_id |
129595748 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of engineering mathematics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129595748 (DE-600)240689-5 (DE-576)015088766 |
title |
On the lifetimes of two-dimensional droplets on smooth wetting patterns |
ctrlnum |
(DE-627)OLC2079031333 (DE-He213)s10665-022-10218-7-p |
title_full |
On the lifetimes of two-dimensional droplets on smooth wetting patterns |
author_sort |
Haynes, Matthew |
journal |
Journal of engineering mathematics |
journalStr |
Journal of engineering mathematics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Haynes, Matthew Pradas, Marc |
container_volume |
135 |
class |
510 VZ |
format_se |
Aufsätze |
author-letter |
Haynes, Matthew |
doi_str_mv |
10.1007/s10665-022-10218-7 |
normlink |
(ORCID)0000-0003-0707-3651 (ORCID)0000-0002-8814-2403 |
normlink_prefix_str_mv |
(orcid)0000-0003-0707-3651 (orcid)0000-0002-8814-2403 |
dewey-full |
510 |
title_sort |
on the lifetimes of two-dimensional droplets on smooth wetting patterns |
title_auth |
On the lifetimes of two-dimensional droplets on smooth wetting patterns |
abstract |
Abstract We study the evolution and lifetime of droplets evaporating on a smooth chemical pattern, which is characterised by a spatially varying contact angle. We formulate a model that combines the evaporation rate of the droplet for a given volume with the static stability of the droplet as the volume changes in time quasi-statically. We derive an exact equation for the evaporation rate that is studied analytically under the limiting cases of nearly neutral wetting and highly hydrophilic conditions. We find that the evaporation rate of the droplet is highly dependent on the size and shape of the fictitious infinity where a far-field boundary conditions needs to be applied. We also study how the droplet’s lifetime depends on the averaged contact angle and strength $$\varepsilon $$ of the chemical pattern, observing that the lifetime of the droplet is maximised for a droplet with average contact angle $$\pi /2$$ and with $$\varepsilon \lesssim 0.1$$. © The Author(s) 2022 |
abstractGer |
Abstract We study the evolution and lifetime of droplets evaporating on a smooth chemical pattern, which is characterised by a spatially varying contact angle. We formulate a model that combines the evaporation rate of the droplet for a given volume with the static stability of the droplet as the volume changes in time quasi-statically. We derive an exact equation for the evaporation rate that is studied analytically under the limiting cases of nearly neutral wetting and highly hydrophilic conditions. We find that the evaporation rate of the droplet is highly dependent on the size and shape of the fictitious infinity where a far-field boundary conditions needs to be applied. We also study how the droplet’s lifetime depends on the averaged contact angle and strength $$\varepsilon $$ of the chemical pattern, observing that the lifetime of the droplet is maximised for a droplet with average contact angle $$\pi /2$$ and with $$\varepsilon \lesssim 0.1$$. © The Author(s) 2022 |
abstract_unstemmed |
Abstract We study the evolution and lifetime of droplets evaporating on a smooth chemical pattern, which is characterised by a spatially varying contact angle. We formulate a model that combines the evaporation rate of the droplet for a given volume with the static stability of the droplet as the volume changes in time quasi-statically. We derive an exact equation for the evaporation rate that is studied analytically under the limiting cases of nearly neutral wetting and highly hydrophilic conditions. We find that the evaporation rate of the droplet is highly dependent on the size and shape of the fictitious infinity where a far-field boundary conditions needs to be applied. We also study how the droplet’s lifetime depends on the averaged contact angle and strength $$\varepsilon $$ of the chemical pattern, observing that the lifetime of the droplet is maximised for a droplet with average contact angle $$\pi /2$$ and with $$\varepsilon \lesssim 0.1$$. © The Author(s) 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT |
container_issue |
1 |
title_short |
On the lifetimes of two-dimensional droplets on smooth wetting patterns |
url |
https://doi.org/10.1007/s10665-022-10218-7 |
remote_bool |
false |
author2 |
Pradas, Marc |
author2Str |
Pradas, Marc |
ppnlink |
129595748 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10665-022-10218-7 |
up_date |
2024-07-03T23:13:19.761Z |
_version_ |
1803601470828838912 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2079031333</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506061219.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10665-022-10218-7</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2079031333</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10665-022-10218-7-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Haynes, Matthew</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0707-3651</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the lifetimes of two-dimensional droplets on smooth wetting patterns</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s) 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We study the evolution and lifetime of droplets evaporating on a smooth chemical pattern, which is characterised by a spatially varying contact angle. We formulate a model that combines the evaporation rate of the droplet for a given volume with the static stability of the droplet as the volume changes in time quasi-statically. We derive an exact equation for the evaporation rate that is studied analytically under the limiting cases of nearly neutral wetting and highly hydrophilic conditions. We find that the evaporation rate of the droplet is highly dependent on the size and shape of the fictitious infinity where a far-field boundary conditions needs to be applied. We also study how the droplet’s lifetime depends on the averaged contact angle and strength $$\varepsilon $$ of the chemical pattern, observing that the lifetime of the droplet is maximised for a droplet with average contact angle $$\pi /2$$ and with $$\varepsilon \lesssim 0.1$$.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Evaporation rate</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Sessile droplets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Wetting phenomena</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pradas, Marc</subfield><subfield code="0">(orcid)0000-0002-8814-2403</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of engineering mathematics</subfield><subfield code="d">Springer Netherlands, 1967</subfield><subfield code="g">135(2022), 1 vom: 28. Juni</subfield><subfield code="w">(DE-627)129595748</subfield><subfield code="w">(DE-600)240689-5</subfield><subfield code="w">(DE-576)015088766</subfield><subfield code="x">0022-0833</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:135</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:28</subfield><subfield code="g">month:06</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10665-022-10218-7</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">135</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">28</subfield><subfield code="c">06</subfield></datafield></record></collection>
|
score |
7.4010077 |