Deep cross-view autoencoder network for multi-view learning

Abstract In many real-world applications, an increasing number of objects can be collected at varying viewpoints or by different sensors, which brings in the urgent demand for recognizing objects from distinct heterogeneous views. Although significant progress has been achieved recently, heterogeneo...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Mi, Jian-Xun [verfasserIn]

Fu, Chang-Qing

Chen, Tao

Gou, Tingting

Format:

Artikel

Sprache:

Englisch

Erschienen:

2022

Schlagwörter:

Multi-view learning

Cross-view reconstruction

Common representation

Cross-view classification

Encoding consistency

Anmerkung:

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Übergeordnetes Werk:

Enthalten in: Multimedia tools and applications - Springer US, 1995, 81(2022), 17 vom: 21. März, Seite 24645-24664

Übergeordnetes Werk:

volume:81 ; year:2022 ; number:17 ; day:21 ; month:03 ; pages:24645-24664

Links:

Volltext

DOI / URN:

10.1007/s11042-022-12636-2

Katalog-ID:

OLC207905225X

Nicht das Richtige dabei?

Schreiben Sie uns!