Thermal enhancement of gangue-cemented paste backfill with graphite and silica sand: an experimental investigation
Abstract Thermal conductivity of mine backfill is vital for understanding the geothermal energy extraction potential in deep underground mines. Geothermal energy extraction efficiency could be improved with higher thermal conductivity of backfill. Thermal conductivities of gangue-cemented paste back...
Ausführliche Beschreibung
Autor*in: |
Li, Baiyi [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Environmental science and pollution research - Springer Berlin Heidelberg, 1994, 29(2022), 32 vom: 25. Feb., Seite 49050-49058 |
---|---|
Übergeordnetes Werk: |
volume:29 ; year:2022 ; number:32 ; day:25 ; month:02 ; pages:49050-49058 |
Links: |
---|
DOI / URN: |
10.1007/s11356-022-19305-9 |
---|
Katalog-ID: |
OLC2079074318 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2079074318 | ||
003 | DE-627 | ||
005 | 20230606195324.0 | ||
007 | tu | ||
008 | 221220s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11356-022-19305-9 |2 doi | |
035 | |a (DE-627)OLC2079074318 | ||
035 | |a (DE-He213)s11356-022-19305-9-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |a 360 |a 333.7 |q VZ |
082 | 0 | 4 | |a 690 |a 333.7 |a 540 |q VZ |
084 | |a BIODIV |q DE-30 |2 fid | ||
100 | 1 | |a Li, Baiyi |e verfasserin |0 (orcid)0000-0002-2583-5683 |4 aut | |
245 | 1 | 0 | |a Thermal enhancement of gangue-cemented paste backfill with graphite and silica sand: an experimental investigation |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 | ||
520 | |a Abstract Thermal conductivity of mine backfill is vital for understanding the geothermal energy extraction potential in deep underground mines. Geothermal energy extraction efficiency could be improved with higher thermal conductivity of backfill. Thermal conductivities of gangue-cemented paste backfill enhanced with graphite and silica sand were investigated through laboratory tests in this article. The thermal conductivity measurement was conducted using the Hot Disk Thermal Constants Analyzer. Effects of graphite and silica sand on the thermal conductivity, slump, and compressive strength of gangue-cemented paste backfill were analyzed. The results highlighted the favorable influence of graphite on the thermal performance of backfilling materials, with adverse effect on the mechanical behavior and negative impact on the flowability. Thermal conductivity of gangue-cemented paste backfill markedly increased with graphite ratio, while more water is consumed for the workable slurry with the increased graphite ratio, which also leads to the degradation of compressive strength. The reasonable graphite content should be determined with the expected thermal enhancement and acceptable compressive strength. The addition of silica sand can effectively enhance the thermal conductivity of GCPB without degrading the compressive performance and flow performance. This study would provide a new insight into the design of backfill considering the thermal conductivity and lay a foundation for the efficient geothermal energy in deep mines. | ||
650 | 4 | |a Backfill | |
650 | 4 | |a Thermal conductivity | |
650 | 4 | |a Graphite | |
650 | 4 | |a Thermal enhancement | |
650 | 4 | |a Thermal Energy storage | |
700 | 1 | |a Zhang, Jixiong |4 aut | |
700 | 1 | |a Yan, Hao |4 aut | |
700 | 1 | |a Liu, Hengfeng |4 aut | |
700 | 1 | |a Zhu, Cunli |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Environmental science and pollution research |d Springer Berlin Heidelberg, 1994 |g 29(2022), 32 vom: 25. Feb., Seite 49050-49058 |w (DE-627)171335805 |w (DE-600)1178791-0 |w (DE-576)038875101 |x 0944-1344 |7 nnns |
773 | 1 | 8 | |g volume:29 |g year:2022 |g number:32 |g day:25 |g month:02 |g pages:49050-49058 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11356-022-19305-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a FID-BIODIV | ||
912 | |a SSG-OLC-UMW | ||
912 | |a SSG-OLC-ARC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-FOR | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a GBV_ILN_252 | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 29 |j 2022 |e 32 |b 25 |c 02 |h 49050-49058 |
author_variant |
b l bl j z jz h y hy h l hl c z cz |
---|---|
matchkey_str |
article:09441344:2022----::hraehneetfageeetdatbcflwtgahtadiiaad |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s11356-022-19305-9 doi (DE-627)OLC2079074318 (DE-He213)s11356-022-19305-9-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Li, Baiyi verfasserin (orcid)0000-0002-2583-5683 aut Thermal enhancement of gangue-cemented paste backfill with graphite and silica sand: an experimental investigation 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract Thermal conductivity of mine backfill is vital for understanding the geothermal energy extraction potential in deep underground mines. Geothermal energy extraction efficiency could be improved with higher thermal conductivity of backfill. Thermal conductivities of gangue-cemented paste backfill enhanced with graphite and silica sand were investigated through laboratory tests in this article. The thermal conductivity measurement was conducted using the Hot Disk Thermal Constants Analyzer. Effects of graphite and silica sand on the thermal conductivity, slump, and compressive strength of gangue-cemented paste backfill were analyzed. The results highlighted the favorable influence of graphite on the thermal performance of backfilling materials, with adverse effect on the mechanical behavior and negative impact on the flowability. Thermal conductivity of gangue-cemented paste backfill markedly increased with graphite ratio, while more water is consumed for the workable slurry with the increased graphite ratio, which also leads to the degradation of compressive strength. The reasonable graphite content should be determined with the expected thermal enhancement and acceptable compressive strength. The addition of silica sand can effectively enhance the thermal conductivity of GCPB without degrading the compressive performance and flow performance. This study would provide a new insight into the design of backfill considering the thermal conductivity and lay a foundation for the efficient geothermal energy in deep mines. Backfill Thermal conductivity Graphite Thermal enhancement Thermal Energy storage Zhang, Jixiong aut Yan, Hao aut Liu, Hengfeng aut Zhu, Cunli aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 29(2022), 32 vom: 25. Feb., Seite 49050-49058 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:29 year:2022 number:32 day:25 month:02 pages:49050-49058 https://doi.org/10.1007/s11356-022-19305-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 29 2022 32 25 02 49050-49058 |
spelling |
10.1007/s11356-022-19305-9 doi (DE-627)OLC2079074318 (DE-He213)s11356-022-19305-9-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Li, Baiyi verfasserin (orcid)0000-0002-2583-5683 aut Thermal enhancement of gangue-cemented paste backfill with graphite and silica sand: an experimental investigation 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract Thermal conductivity of mine backfill is vital for understanding the geothermal energy extraction potential in deep underground mines. Geothermal energy extraction efficiency could be improved with higher thermal conductivity of backfill. Thermal conductivities of gangue-cemented paste backfill enhanced with graphite and silica sand were investigated through laboratory tests in this article. The thermal conductivity measurement was conducted using the Hot Disk Thermal Constants Analyzer. Effects of graphite and silica sand on the thermal conductivity, slump, and compressive strength of gangue-cemented paste backfill were analyzed. The results highlighted the favorable influence of graphite on the thermal performance of backfilling materials, with adverse effect on the mechanical behavior and negative impact on the flowability. Thermal conductivity of gangue-cemented paste backfill markedly increased with graphite ratio, while more water is consumed for the workable slurry with the increased graphite ratio, which also leads to the degradation of compressive strength. The reasonable graphite content should be determined with the expected thermal enhancement and acceptable compressive strength. The addition of silica sand can effectively enhance the thermal conductivity of GCPB without degrading the compressive performance and flow performance. This study would provide a new insight into the design of backfill considering the thermal conductivity and lay a foundation for the efficient geothermal energy in deep mines. Backfill Thermal conductivity Graphite Thermal enhancement Thermal Energy storage Zhang, Jixiong aut Yan, Hao aut Liu, Hengfeng aut Zhu, Cunli aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 29(2022), 32 vom: 25. Feb., Seite 49050-49058 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:29 year:2022 number:32 day:25 month:02 pages:49050-49058 https://doi.org/10.1007/s11356-022-19305-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 29 2022 32 25 02 49050-49058 |
allfields_unstemmed |
10.1007/s11356-022-19305-9 doi (DE-627)OLC2079074318 (DE-He213)s11356-022-19305-9-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Li, Baiyi verfasserin (orcid)0000-0002-2583-5683 aut Thermal enhancement of gangue-cemented paste backfill with graphite and silica sand: an experimental investigation 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract Thermal conductivity of mine backfill is vital for understanding the geothermal energy extraction potential in deep underground mines. Geothermal energy extraction efficiency could be improved with higher thermal conductivity of backfill. Thermal conductivities of gangue-cemented paste backfill enhanced with graphite and silica sand were investigated through laboratory tests in this article. The thermal conductivity measurement was conducted using the Hot Disk Thermal Constants Analyzer. Effects of graphite and silica sand on the thermal conductivity, slump, and compressive strength of gangue-cemented paste backfill were analyzed. The results highlighted the favorable influence of graphite on the thermal performance of backfilling materials, with adverse effect on the mechanical behavior and negative impact on the flowability. Thermal conductivity of gangue-cemented paste backfill markedly increased with graphite ratio, while more water is consumed for the workable slurry with the increased graphite ratio, which also leads to the degradation of compressive strength. The reasonable graphite content should be determined with the expected thermal enhancement and acceptable compressive strength. The addition of silica sand can effectively enhance the thermal conductivity of GCPB without degrading the compressive performance and flow performance. This study would provide a new insight into the design of backfill considering the thermal conductivity and lay a foundation for the efficient geothermal energy in deep mines. Backfill Thermal conductivity Graphite Thermal enhancement Thermal Energy storage Zhang, Jixiong aut Yan, Hao aut Liu, Hengfeng aut Zhu, Cunli aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 29(2022), 32 vom: 25. Feb., Seite 49050-49058 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:29 year:2022 number:32 day:25 month:02 pages:49050-49058 https://doi.org/10.1007/s11356-022-19305-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 29 2022 32 25 02 49050-49058 |
allfieldsGer |
10.1007/s11356-022-19305-9 doi (DE-627)OLC2079074318 (DE-He213)s11356-022-19305-9-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Li, Baiyi verfasserin (orcid)0000-0002-2583-5683 aut Thermal enhancement of gangue-cemented paste backfill with graphite and silica sand: an experimental investigation 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract Thermal conductivity of mine backfill is vital for understanding the geothermal energy extraction potential in deep underground mines. Geothermal energy extraction efficiency could be improved with higher thermal conductivity of backfill. Thermal conductivities of gangue-cemented paste backfill enhanced with graphite and silica sand were investigated through laboratory tests in this article. The thermal conductivity measurement was conducted using the Hot Disk Thermal Constants Analyzer. Effects of graphite and silica sand on the thermal conductivity, slump, and compressive strength of gangue-cemented paste backfill were analyzed. The results highlighted the favorable influence of graphite on the thermal performance of backfilling materials, with adverse effect on the mechanical behavior and negative impact on the flowability. Thermal conductivity of gangue-cemented paste backfill markedly increased with graphite ratio, while more water is consumed for the workable slurry with the increased graphite ratio, which also leads to the degradation of compressive strength. The reasonable graphite content should be determined with the expected thermal enhancement and acceptable compressive strength. The addition of silica sand can effectively enhance the thermal conductivity of GCPB without degrading the compressive performance and flow performance. This study would provide a new insight into the design of backfill considering the thermal conductivity and lay a foundation for the efficient geothermal energy in deep mines. Backfill Thermal conductivity Graphite Thermal enhancement Thermal Energy storage Zhang, Jixiong aut Yan, Hao aut Liu, Hengfeng aut Zhu, Cunli aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 29(2022), 32 vom: 25. Feb., Seite 49050-49058 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:29 year:2022 number:32 day:25 month:02 pages:49050-49058 https://doi.org/10.1007/s11356-022-19305-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 29 2022 32 25 02 49050-49058 |
allfieldsSound |
10.1007/s11356-022-19305-9 doi (DE-627)OLC2079074318 (DE-He213)s11356-022-19305-9-p DE-627 ger DE-627 rakwb eng 570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Li, Baiyi verfasserin (orcid)0000-0002-2583-5683 aut Thermal enhancement of gangue-cemented paste backfill with graphite and silica sand: an experimental investigation 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract Thermal conductivity of mine backfill is vital for understanding the geothermal energy extraction potential in deep underground mines. Geothermal energy extraction efficiency could be improved with higher thermal conductivity of backfill. Thermal conductivities of gangue-cemented paste backfill enhanced with graphite and silica sand were investigated through laboratory tests in this article. The thermal conductivity measurement was conducted using the Hot Disk Thermal Constants Analyzer. Effects of graphite and silica sand on the thermal conductivity, slump, and compressive strength of gangue-cemented paste backfill were analyzed. The results highlighted the favorable influence of graphite on the thermal performance of backfilling materials, with adverse effect on the mechanical behavior and negative impact on the flowability. Thermal conductivity of gangue-cemented paste backfill markedly increased with graphite ratio, while more water is consumed for the workable slurry with the increased graphite ratio, which also leads to the degradation of compressive strength. The reasonable graphite content should be determined with the expected thermal enhancement and acceptable compressive strength. The addition of silica sand can effectively enhance the thermal conductivity of GCPB without degrading the compressive performance and flow performance. This study would provide a new insight into the design of backfill considering the thermal conductivity and lay a foundation for the efficient geothermal energy in deep mines. Backfill Thermal conductivity Graphite Thermal enhancement Thermal Energy storage Zhang, Jixiong aut Yan, Hao aut Liu, Hengfeng aut Zhu, Cunli aut Enthalten in Environmental science and pollution research Springer Berlin Heidelberg, 1994 29(2022), 32 vom: 25. Feb., Seite 49050-49058 (DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 0944-1344 nnns volume:29 year:2022 number:32 day:25 month:02 pages:49050-49058 https://doi.org/10.1007/s11356-022-19305-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 29 2022 32 25 02 49050-49058 |
language |
English |
source |
Enthalten in Environmental science and pollution research 29(2022), 32 vom: 25. Feb., Seite 49050-49058 volume:29 year:2022 number:32 day:25 month:02 pages:49050-49058 |
sourceStr |
Enthalten in Environmental science and pollution research 29(2022), 32 vom: 25. Feb., Seite 49050-49058 volume:29 year:2022 number:32 day:25 month:02 pages:49050-49058 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Backfill Thermal conductivity Graphite Thermal enhancement Thermal Energy storage |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Environmental science and pollution research |
authorswithroles_txt_mv |
Li, Baiyi @@aut@@ Zhang, Jixiong @@aut@@ Yan, Hao @@aut@@ Liu, Hengfeng @@aut@@ Zhu, Cunli @@aut@@ |
publishDateDaySort_date |
2022-02-25T00:00:00Z |
hierarchy_top_id |
171335805 |
dewey-sort |
3570 |
id |
OLC2079074318 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2079074318</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230606195324.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11356-022-19305-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2079074318</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11356-022-19305-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">360</subfield><subfield code="a">333.7</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="a">333.7</subfield><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Baiyi</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2583-5683</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermal enhancement of gangue-cemented paste backfill with graphite and silica sand: an experimental investigation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Thermal conductivity of mine backfill is vital for understanding the geothermal energy extraction potential in deep underground mines. Geothermal energy extraction efficiency could be improved with higher thermal conductivity of backfill. Thermal conductivities of gangue-cemented paste backfill enhanced with graphite and silica sand were investigated through laboratory tests in this article. The thermal conductivity measurement was conducted using the Hot Disk Thermal Constants Analyzer. Effects of graphite and silica sand on the thermal conductivity, slump, and compressive strength of gangue-cemented paste backfill were analyzed. The results highlighted the favorable influence of graphite on the thermal performance of backfilling materials, with adverse effect on the mechanical behavior and negative impact on the flowability. Thermal conductivity of gangue-cemented paste backfill markedly increased with graphite ratio, while more water is consumed for the workable slurry with the increased graphite ratio, which also leads to the degradation of compressive strength. The reasonable graphite content should be determined with the expected thermal enhancement and acceptable compressive strength. The addition of silica sand can effectively enhance the thermal conductivity of GCPB without degrading the compressive performance and flow performance. This study would provide a new insight into the design of backfill considering the thermal conductivity and lay a foundation for the efficient geothermal energy in deep mines.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Backfill</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal conductivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graphite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal enhancement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal Energy storage</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jixiong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Hao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Hengfeng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Cunli</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Environmental science and pollution research</subfield><subfield code="d">Springer Berlin Heidelberg, 1994</subfield><subfield code="g">29(2022), 32 vom: 25. Feb., Seite 49050-49058</subfield><subfield code="w">(DE-627)171335805</subfield><subfield code="w">(DE-600)1178791-0</subfield><subfield code="w">(DE-576)038875101</subfield><subfield code="x">0944-1344</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:29</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:32</subfield><subfield code="g">day:25</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:49050-49058</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11356-022-19305-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">29</subfield><subfield code="j">2022</subfield><subfield code="e">32</subfield><subfield code="b">25</subfield><subfield code="c">02</subfield><subfield code="h">49050-49058</subfield></datafield></record></collection>
|
author |
Li, Baiyi |
spellingShingle |
Li, Baiyi ddc 570 ddc 690 fid BIODIV misc Backfill misc Thermal conductivity misc Graphite misc Thermal enhancement misc Thermal Energy storage Thermal enhancement of gangue-cemented paste backfill with graphite and silica sand: an experimental investigation |
authorStr |
Li, Baiyi |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)171335805 |
format |
Article |
dewey-ones |
570 - Life sciences; biology 360 - Social problems & services; associations 333 - Economics of land & energy 690 - Buildings 540 - Chemistry & allied sciences |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0944-1344 |
topic_title |
570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid Thermal enhancement of gangue-cemented paste backfill with graphite and silica sand: an experimental investigation Backfill Thermal conductivity Graphite Thermal enhancement Thermal Energy storage |
topic |
ddc 570 ddc 690 fid BIODIV misc Backfill misc Thermal conductivity misc Graphite misc Thermal enhancement misc Thermal Energy storage |
topic_unstemmed |
ddc 570 ddc 690 fid BIODIV misc Backfill misc Thermal conductivity misc Graphite misc Thermal enhancement misc Thermal Energy storage |
topic_browse |
ddc 570 ddc 690 fid BIODIV misc Backfill misc Thermal conductivity misc Graphite misc Thermal enhancement misc Thermal Energy storage |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Environmental science and pollution research |
hierarchy_parent_id |
171335805 |
dewey-tens |
570 - Life sciences; biology 360 - Social problems & social services 330 - Economics 690 - Building & construction 540 - Chemistry |
hierarchy_top_title |
Environmental science and pollution research |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)171335805 (DE-600)1178791-0 (DE-576)038875101 |
title |
Thermal enhancement of gangue-cemented paste backfill with graphite and silica sand: an experimental investigation |
ctrlnum |
(DE-627)OLC2079074318 (DE-He213)s11356-022-19305-9-p |
title_full |
Thermal enhancement of gangue-cemented paste backfill with graphite and silica sand: an experimental investigation |
author_sort |
Li, Baiyi |
journal |
Environmental science and pollution research |
journalStr |
Environmental science and pollution research |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 300 - Social sciences 600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
49050 |
author_browse |
Li, Baiyi Zhang, Jixiong Yan, Hao Liu, Hengfeng Zhu, Cunli |
container_volume |
29 |
class |
570 360 333.7 VZ 690 333.7 540 VZ BIODIV DE-30 fid |
format_se |
Aufsätze |
author-letter |
Li, Baiyi |
doi_str_mv |
10.1007/s11356-022-19305-9 |
normlink |
(ORCID)0000-0002-2583-5683 |
normlink_prefix_str_mv |
(orcid)0000-0002-2583-5683 |
dewey-full |
570 360 333.7 690 540 |
title_sort |
thermal enhancement of gangue-cemented paste backfill with graphite and silica sand: an experimental investigation |
title_auth |
Thermal enhancement of gangue-cemented paste backfill with graphite and silica sand: an experimental investigation |
abstract |
Abstract Thermal conductivity of mine backfill is vital for understanding the geothermal energy extraction potential in deep underground mines. Geothermal energy extraction efficiency could be improved with higher thermal conductivity of backfill. Thermal conductivities of gangue-cemented paste backfill enhanced with graphite and silica sand were investigated through laboratory tests in this article. The thermal conductivity measurement was conducted using the Hot Disk Thermal Constants Analyzer. Effects of graphite and silica sand on the thermal conductivity, slump, and compressive strength of gangue-cemented paste backfill were analyzed. The results highlighted the favorable influence of graphite on the thermal performance of backfilling materials, with adverse effect on the mechanical behavior and negative impact on the flowability. Thermal conductivity of gangue-cemented paste backfill markedly increased with graphite ratio, while more water is consumed for the workable slurry with the increased graphite ratio, which also leads to the degradation of compressive strength. The reasonable graphite content should be determined with the expected thermal enhancement and acceptable compressive strength. The addition of silica sand can effectively enhance the thermal conductivity of GCPB without degrading the compressive performance and flow performance. This study would provide a new insight into the design of backfill considering the thermal conductivity and lay a foundation for the efficient geothermal energy in deep mines. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
abstractGer |
Abstract Thermal conductivity of mine backfill is vital for understanding the geothermal energy extraction potential in deep underground mines. Geothermal energy extraction efficiency could be improved with higher thermal conductivity of backfill. Thermal conductivities of gangue-cemented paste backfill enhanced with graphite and silica sand were investigated through laboratory tests in this article. The thermal conductivity measurement was conducted using the Hot Disk Thermal Constants Analyzer. Effects of graphite and silica sand on the thermal conductivity, slump, and compressive strength of gangue-cemented paste backfill were analyzed. The results highlighted the favorable influence of graphite on the thermal performance of backfilling materials, with adverse effect on the mechanical behavior and negative impact on the flowability. Thermal conductivity of gangue-cemented paste backfill markedly increased with graphite ratio, while more water is consumed for the workable slurry with the increased graphite ratio, which also leads to the degradation of compressive strength. The reasonable graphite content should be determined with the expected thermal enhancement and acceptable compressive strength. The addition of silica sand can effectively enhance the thermal conductivity of GCPB without degrading the compressive performance and flow performance. This study would provide a new insight into the design of backfill considering the thermal conductivity and lay a foundation for the efficient geothermal energy in deep mines. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
abstract_unstemmed |
Abstract Thermal conductivity of mine backfill is vital for understanding the geothermal energy extraction potential in deep underground mines. Geothermal energy extraction efficiency could be improved with higher thermal conductivity of backfill. Thermal conductivities of gangue-cemented paste backfill enhanced with graphite and silica sand were investigated through laboratory tests in this article. The thermal conductivity measurement was conducted using the Hot Disk Thermal Constants Analyzer. Effects of graphite and silica sand on the thermal conductivity, slump, and compressive strength of gangue-cemented paste backfill were analyzed. The results highlighted the favorable influence of graphite on the thermal performance of backfilling materials, with adverse effect on the mechanical behavior and negative impact on the flowability. Thermal conductivity of gangue-cemented paste backfill markedly increased with graphite ratio, while more water is consumed for the workable slurry with the increased graphite ratio, which also leads to the degradation of compressive strength. The reasonable graphite content should be determined with the expected thermal enhancement and acceptable compressive strength. The addition of silica sand can effectively enhance the thermal conductivity of GCPB without degrading the compressive performance and flow performance. This study would provide a new insight into the design of backfill considering the thermal conductivity and lay a foundation for the efficient geothermal energy in deep mines. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC FID-BIODIV SSG-OLC-UMW SSG-OLC-ARC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-FOR SSG-OLC-DE-84 GBV_ILN_252 GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
32 |
title_short |
Thermal enhancement of gangue-cemented paste backfill with graphite and silica sand: an experimental investigation |
url |
https://doi.org/10.1007/s11356-022-19305-9 |
remote_bool |
false |
author2 |
Zhang, Jixiong Yan, Hao Liu, Hengfeng Zhu, Cunli |
author2Str |
Zhang, Jixiong Yan, Hao Liu, Hengfeng Zhu, Cunli |
ppnlink |
171335805 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11356-022-19305-9 |
up_date |
2024-07-03T23:24:18.988Z |
_version_ |
1803602162079498240 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2079074318</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230606195324.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11356-022-19305-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2079074318</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11356-022-19305-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">360</subfield><subfield code="a">333.7</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">690</subfield><subfield code="a">333.7</subfield><subfield code="a">540</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">BIODIV</subfield><subfield code="q">DE-30</subfield><subfield code="2">fid</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Baiyi</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2583-5683</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Thermal enhancement of gangue-cemented paste backfill with graphite and silica sand: an experimental investigation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Thermal conductivity of mine backfill is vital for understanding the geothermal energy extraction potential in deep underground mines. Geothermal energy extraction efficiency could be improved with higher thermal conductivity of backfill. Thermal conductivities of gangue-cemented paste backfill enhanced with graphite and silica sand were investigated through laboratory tests in this article. The thermal conductivity measurement was conducted using the Hot Disk Thermal Constants Analyzer. Effects of graphite and silica sand on the thermal conductivity, slump, and compressive strength of gangue-cemented paste backfill were analyzed. The results highlighted the favorable influence of graphite on the thermal performance of backfilling materials, with adverse effect on the mechanical behavior and negative impact on the flowability. Thermal conductivity of gangue-cemented paste backfill markedly increased with graphite ratio, while more water is consumed for the workable slurry with the increased graphite ratio, which also leads to the degradation of compressive strength. The reasonable graphite content should be determined with the expected thermal enhancement and acceptable compressive strength. The addition of silica sand can effectively enhance the thermal conductivity of GCPB without degrading the compressive performance and flow performance. This study would provide a new insight into the design of backfill considering the thermal conductivity and lay a foundation for the efficient geothermal energy in deep mines.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Backfill</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal conductivity</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Graphite</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal enhancement</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Thermal Energy storage</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Jixiong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yan, Hao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Hengfeng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhu, Cunli</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Environmental science and pollution research</subfield><subfield code="d">Springer Berlin Heidelberg, 1994</subfield><subfield code="g">29(2022), 32 vom: 25. Feb., Seite 49050-49058</subfield><subfield code="w">(DE-627)171335805</subfield><subfield code="w">(DE-600)1178791-0</subfield><subfield code="w">(DE-576)038875101</subfield><subfield code="x">0944-1344</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:29</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:32</subfield><subfield code="g">day:25</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:49050-49058</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11356-022-19305-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">FID-BIODIV</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-UMW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-ARC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-FOR</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_252</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">29</subfield><subfield code="j">2022</subfield><subfield code="e">32</subfield><subfield code="b">25</subfield><subfield code="c">02</subfield><subfield code="h">49050-49058</subfield></datafield></record></collection>
|
score |
7.401292 |