Collaborative learning mutual network for domain adaptation in person re-identification

Abstract In this paper, we propose a new Collaborative Learning Mutual Network (CLM-Net) for domain adaptation in person re-identification (re-id). Current state-of-the-art re-id models achieved good performances when trained on published datasets. However, these trained models work poorly on newly...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Tay, Chiat-Pin [verfasserIn]

Yap, Kim-Hui

Format:

Artikel

Sprache:

Englisch

Erschienen:

2022

Schlagwörter:

Collaborative and mutual learning

Domain adaptation

Person re-identification

Contrastive learning

Anmerkung:

© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022

Übergeordnetes Werk:

Enthalten in: Neural computing & applications - Springer London, 1993, 34(2022), 14 vom: 16. März, Seite 12211-12222

Übergeordnetes Werk:

volume:34 ; year:2022 ; number:14 ; day:16 ; month:03 ; pages:12211-12222

Links:

Volltext

DOI / URN:

10.1007/s00521-022-07108-5

Katalog-ID:

OLC2079157698

Nicht das Richtige dabei?

Schreiben Sie uns!