Solar System Science with the Orbiting Astronomical Satellite Investigating Stellar Systems (OASIS) Observatory
Abstract The overarching theme of the Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS), an Astrophysics MIDEX-class mission concept, is Following water from galaxies, through protostellar systems, to Earth’s oceans. The OASIS science objectives address fundamental questions...
Ausführliche Beschreibung
Autor*in: |
Anderson, Carrie M. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Space science reviews - Springer Netherlands, 1962, 218(2022), 5 vom: 18. Juli |
---|---|
Übergeordnetes Werk: |
volume:218 ; year:2022 ; number:5 ; day:18 ; month:07 |
Links: |
---|
DOI / URN: |
10.1007/s11214-022-00911-5 |
---|
Katalog-ID: |
OLC2079184032 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2079184032 | ||
003 | DE-627 | ||
005 | 20230506060604.0 | ||
007 | tu | ||
008 | 221220s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11214-022-00911-5 |2 doi | |
035 | |a (DE-627)OLC2079184032 | ||
035 | |a (DE-He213)s11214-022-00911-5-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |q VZ |
084 | |a 16,12 |2 ssgn | ||
100 | 1 | |a Anderson, Carrie M. |e verfasserin |4 aut | |
245 | 1 | 0 | |a Solar System Science with the Orbiting Astronomical Satellite Investigating Stellar Systems (OASIS) Observatory |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022 | ||
520 | |a Abstract The overarching theme of the Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS), an Astrophysics MIDEX-class mission concept, is Following water from galaxies, through protostellar systems, to Earth’s oceans. The OASIS science objectives address fundamental questions raised in “Pathways to Discovery in Astronomy and Astrophysics for the 2020s (National Academies of Sciences and Medicine, Pathways to Discovery in Astronomy and Astrophysics for the 2020s, 2021, https://doi.org/10.17226/26141, https://www.nap.edu/catalog/26141/pathways-to-discovery-in-astronomy-and-astrophysics-for-the-2020s)” and in “Enduring Quests and Daring Visions” (Kouveliotou et al. in Enduring quests-daring visions (NASA astrophysics in the next three decades), 2014, arXiv:1401.3741), in the areas of: 1) the Interstellar Medium and Planet Formation, 2) Exoplanets, Astrobiology, and the Solar System, and 3) Galaxies. The OASIS science objectives require space-borne observations of galaxies, molecular clouds, protoplanetary disks, and solar system objects utilizing a telescope with a collecting area that is only achievable by large apertures coupled with cryogenic heterodyne receivers. OASIS will deploy an innovative 14-meter inflatable reflector that enables >16× the sensitivity and >4× the angular resolution of Herschel, and complements the short wavelength capabilities of James Webb Space Telescope. The OASIS state-of-the-art cryogenic heterodyne receivers will enable high spectral resolution (resolving power $>10^{6}$) observations at terahertz (THz) frequencies. These frequencies encompass far-IR transitions of water and its isotopologues, HD, and other molecular species, from 660 to 63 μm that are otherwise obscured by Earth’s atmosphere. From observations of the ground state HD line, OASIS will directly measure gas mass in a wide variety of astrophysical objects. Over its one-year baseline mission, OASIS will find water sources as close as the Moon, to galaxies ∼4 billion light years away. This paper reviews the solar system science achievable and planned with OASIS. | ||
650 | 4 | |a Solar system science | |
650 | 4 | |a Planetary atmospheres | |
650 | 4 | |a Comets | |
650 | 4 | |a Active icy moons | |
650 | 4 | |a THz spectroscopy | |
650 | 4 | |a Heterodyne spectral resolution | |
650 | 4 | |a Flight mission concept | |
700 | 1 | |a Biver, Nicolas |4 aut | |
700 | 1 | |a Bjoraker, Gordon L. |4 aut | |
700 | 1 | |a Cavalié, Thibault |4 aut | |
700 | 1 | |a Chin, Gordon |4 aut | |
700 | 1 | |a DiSanti, Michael A. |4 aut | |
700 | 1 | |a Hartogh, Paul |4 aut | |
700 | 1 | |a Tielens, Alexander |4 aut | |
700 | 1 | |a Walker, Christopher K. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Space science reviews |d Springer Netherlands, 1962 |g 218(2022), 5 vom: 18. Juli |w (DE-627)129086606 |w (DE-600)4860-4 |w (DE-576)014420724 |x 0038-6308 |7 nnns |
773 | 1 | 8 | |g volume:218 |g year:2022 |g number:5 |g day:18 |g month:07 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11214-022-00911-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-AST | ||
912 | |a SSG-OPC-AST | ||
912 | |a GBV_ILN_47 | ||
951 | |a AR | ||
952 | |d 218 |j 2022 |e 5 |b 18 |c 07 |
author_variant |
c m a cm cma n b nb g l b gl glb t c tc g c gc m a d ma mad p h ph a t at c k w ck ckw |
---|---|
matchkey_str |
article:00386308:2022----::oassesineihhobtnatooiastlienetgtnsel |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s11214-022-00911-5 doi (DE-627)OLC2079184032 (DE-He213)s11214-022-00911-5-p DE-627 ger DE-627 rakwb eng 600 VZ 16,12 ssgn Anderson, Carrie M. verfasserin aut Solar System Science with the Orbiting Astronomical Satellite Investigating Stellar Systems (OASIS) Observatory 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022 Abstract The overarching theme of the Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS), an Astrophysics MIDEX-class mission concept, is Following water from galaxies, through protostellar systems, to Earth’s oceans. The OASIS science objectives address fundamental questions raised in “Pathways to Discovery in Astronomy and Astrophysics for the 2020s (National Academies of Sciences and Medicine, Pathways to Discovery in Astronomy and Astrophysics for the 2020s, 2021, https://doi.org/10.17226/26141, https://www.nap.edu/catalog/26141/pathways-to-discovery-in-astronomy-and-astrophysics-for-the-2020s)” and in “Enduring Quests and Daring Visions” (Kouveliotou et al. in Enduring quests-daring visions (NASA astrophysics in the next three decades), 2014, arXiv:1401.3741), in the areas of: 1) the Interstellar Medium and Planet Formation, 2) Exoplanets, Astrobiology, and the Solar System, and 3) Galaxies. The OASIS science objectives require space-borne observations of galaxies, molecular clouds, protoplanetary disks, and solar system objects utilizing a telescope with a collecting area that is only achievable by large apertures coupled with cryogenic heterodyne receivers. OASIS will deploy an innovative 14-meter inflatable reflector that enables >16× the sensitivity and >4× the angular resolution of Herschel, and complements the short wavelength capabilities of James Webb Space Telescope. The OASIS state-of-the-art cryogenic heterodyne receivers will enable high spectral resolution (resolving power $>10^{6}$) observations at terahertz (THz) frequencies. These frequencies encompass far-IR transitions of water and its isotopologues, HD, and other molecular species, from 660 to 63 μm that are otherwise obscured by Earth’s atmosphere. From observations of the ground state HD line, OASIS will directly measure gas mass in a wide variety of astrophysical objects. Over its one-year baseline mission, OASIS will find water sources as close as the Moon, to galaxies ∼4 billion light years away. This paper reviews the solar system science achievable and planned with OASIS. Solar system science Planetary atmospheres Comets Active icy moons THz spectroscopy Heterodyne spectral resolution Flight mission concept Biver, Nicolas aut Bjoraker, Gordon L. aut Cavalié, Thibault aut Chin, Gordon aut DiSanti, Michael A. aut Hartogh, Paul aut Tielens, Alexander aut Walker, Christopher K. aut Enthalten in Space science reviews Springer Netherlands, 1962 218(2022), 5 vom: 18. Juli (DE-627)129086606 (DE-600)4860-4 (DE-576)014420724 0038-6308 nnns volume:218 year:2022 number:5 day:18 month:07 https://doi.org/10.1007/s11214-022-00911-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-AST SSG-OPC-AST GBV_ILN_47 AR 218 2022 5 18 07 |
spelling |
10.1007/s11214-022-00911-5 doi (DE-627)OLC2079184032 (DE-He213)s11214-022-00911-5-p DE-627 ger DE-627 rakwb eng 600 VZ 16,12 ssgn Anderson, Carrie M. verfasserin aut Solar System Science with the Orbiting Astronomical Satellite Investigating Stellar Systems (OASIS) Observatory 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022 Abstract The overarching theme of the Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS), an Astrophysics MIDEX-class mission concept, is Following water from galaxies, through protostellar systems, to Earth’s oceans. The OASIS science objectives address fundamental questions raised in “Pathways to Discovery in Astronomy and Astrophysics for the 2020s (National Academies of Sciences and Medicine, Pathways to Discovery in Astronomy and Astrophysics for the 2020s, 2021, https://doi.org/10.17226/26141, https://www.nap.edu/catalog/26141/pathways-to-discovery-in-astronomy-and-astrophysics-for-the-2020s)” and in “Enduring Quests and Daring Visions” (Kouveliotou et al. in Enduring quests-daring visions (NASA astrophysics in the next three decades), 2014, arXiv:1401.3741), in the areas of: 1) the Interstellar Medium and Planet Formation, 2) Exoplanets, Astrobiology, and the Solar System, and 3) Galaxies. The OASIS science objectives require space-borne observations of galaxies, molecular clouds, protoplanetary disks, and solar system objects utilizing a telescope with a collecting area that is only achievable by large apertures coupled with cryogenic heterodyne receivers. OASIS will deploy an innovative 14-meter inflatable reflector that enables >16× the sensitivity and >4× the angular resolution of Herschel, and complements the short wavelength capabilities of James Webb Space Telescope. The OASIS state-of-the-art cryogenic heterodyne receivers will enable high spectral resolution (resolving power $>10^{6}$) observations at terahertz (THz) frequencies. These frequencies encompass far-IR transitions of water and its isotopologues, HD, and other molecular species, from 660 to 63 μm that are otherwise obscured by Earth’s atmosphere. From observations of the ground state HD line, OASIS will directly measure gas mass in a wide variety of astrophysical objects. Over its one-year baseline mission, OASIS will find water sources as close as the Moon, to galaxies ∼4 billion light years away. This paper reviews the solar system science achievable and planned with OASIS. Solar system science Planetary atmospheres Comets Active icy moons THz spectroscopy Heterodyne spectral resolution Flight mission concept Biver, Nicolas aut Bjoraker, Gordon L. aut Cavalié, Thibault aut Chin, Gordon aut DiSanti, Michael A. aut Hartogh, Paul aut Tielens, Alexander aut Walker, Christopher K. aut Enthalten in Space science reviews Springer Netherlands, 1962 218(2022), 5 vom: 18. Juli (DE-627)129086606 (DE-600)4860-4 (DE-576)014420724 0038-6308 nnns volume:218 year:2022 number:5 day:18 month:07 https://doi.org/10.1007/s11214-022-00911-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-AST SSG-OPC-AST GBV_ILN_47 AR 218 2022 5 18 07 |
allfields_unstemmed |
10.1007/s11214-022-00911-5 doi (DE-627)OLC2079184032 (DE-He213)s11214-022-00911-5-p DE-627 ger DE-627 rakwb eng 600 VZ 16,12 ssgn Anderson, Carrie M. verfasserin aut Solar System Science with the Orbiting Astronomical Satellite Investigating Stellar Systems (OASIS) Observatory 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022 Abstract The overarching theme of the Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS), an Astrophysics MIDEX-class mission concept, is Following water from galaxies, through protostellar systems, to Earth’s oceans. The OASIS science objectives address fundamental questions raised in “Pathways to Discovery in Astronomy and Astrophysics for the 2020s (National Academies of Sciences and Medicine, Pathways to Discovery in Astronomy and Astrophysics for the 2020s, 2021, https://doi.org/10.17226/26141, https://www.nap.edu/catalog/26141/pathways-to-discovery-in-astronomy-and-astrophysics-for-the-2020s)” and in “Enduring Quests and Daring Visions” (Kouveliotou et al. in Enduring quests-daring visions (NASA astrophysics in the next three decades), 2014, arXiv:1401.3741), in the areas of: 1) the Interstellar Medium and Planet Formation, 2) Exoplanets, Astrobiology, and the Solar System, and 3) Galaxies. The OASIS science objectives require space-borne observations of galaxies, molecular clouds, protoplanetary disks, and solar system objects utilizing a telescope with a collecting area that is only achievable by large apertures coupled with cryogenic heterodyne receivers. OASIS will deploy an innovative 14-meter inflatable reflector that enables >16× the sensitivity and >4× the angular resolution of Herschel, and complements the short wavelength capabilities of James Webb Space Telescope. The OASIS state-of-the-art cryogenic heterodyne receivers will enable high spectral resolution (resolving power $>10^{6}$) observations at terahertz (THz) frequencies. These frequencies encompass far-IR transitions of water and its isotopologues, HD, and other molecular species, from 660 to 63 μm that are otherwise obscured by Earth’s atmosphere. From observations of the ground state HD line, OASIS will directly measure gas mass in a wide variety of astrophysical objects. Over its one-year baseline mission, OASIS will find water sources as close as the Moon, to galaxies ∼4 billion light years away. This paper reviews the solar system science achievable and planned with OASIS. Solar system science Planetary atmospheres Comets Active icy moons THz spectroscopy Heterodyne spectral resolution Flight mission concept Biver, Nicolas aut Bjoraker, Gordon L. aut Cavalié, Thibault aut Chin, Gordon aut DiSanti, Michael A. aut Hartogh, Paul aut Tielens, Alexander aut Walker, Christopher K. aut Enthalten in Space science reviews Springer Netherlands, 1962 218(2022), 5 vom: 18. Juli (DE-627)129086606 (DE-600)4860-4 (DE-576)014420724 0038-6308 nnns volume:218 year:2022 number:5 day:18 month:07 https://doi.org/10.1007/s11214-022-00911-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-AST SSG-OPC-AST GBV_ILN_47 AR 218 2022 5 18 07 |
allfieldsGer |
10.1007/s11214-022-00911-5 doi (DE-627)OLC2079184032 (DE-He213)s11214-022-00911-5-p DE-627 ger DE-627 rakwb eng 600 VZ 16,12 ssgn Anderson, Carrie M. verfasserin aut Solar System Science with the Orbiting Astronomical Satellite Investigating Stellar Systems (OASIS) Observatory 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022 Abstract The overarching theme of the Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS), an Astrophysics MIDEX-class mission concept, is Following water from galaxies, through protostellar systems, to Earth’s oceans. The OASIS science objectives address fundamental questions raised in “Pathways to Discovery in Astronomy and Astrophysics for the 2020s (National Academies of Sciences and Medicine, Pathways to Discovery in Astronomy and Astrophysics for the 2020s, 2021, https://doi.org/10.17226/26141, https://www.nap.edu/catalog/26141/pathways-to-discovery-in-astronomy-and-astrophysics-for-the-2020s)” and in “Enduring Quests and Daring Visions” (Kouveliotou et al. in Enduring quests-daring visions (NASA astrophysics in the next three decades), 2014, arXiv:1401.3741), in the areas of: 1) the Interstellar Medium and Planet Formation, 2) Exoplanets, Astrobiology, and the Solar System, and 3) Galaxies. The OASIS science objectives require space-borne observations of galaxies, molecular clouds, protoplanetary disks, and solar system objects utilizing a telescope with a collecting area that is only achievable by large apertures coupled with cryogenic heterodyne receivers. OASIS will deploy an innovative 14-meter inflatable reflector that enables >16× the sensitivity and >4× the angular resolution of Herschel, and complements the short wavelength capabilities of James Webb Space Telescope. The OASIS state-of-the-art cryogenic heterodyne receivers will enable high spectral resolution (resolving power $>10^{6}$) observations at terahertz (THz) frequencies. These frequencies encompass far-IR transitions of water and its isotopologues, HD, and other molecular species, from 660 to 63 μm that are otherwise obscured by Earth’s atmosphere. From observations of the ground state HD line, OASIS will directly measure gas mass in a wide variety of astrophysical objects. Over its one-year baseline mission, OASIS will find water sources as close as the Moon, to galaxies ∼4 billion light years away. This paper reviews the solar system science achievable and planned with OASIS. Solar system science Planetary atmospheres Comets Active icy moons THz spectroscopy Heterodyne spectral resolution Flight mission concept Biver, Nicolas aut Bjoraker, Gordon L. aut Cavalié, Thibault aut Chin, Gordon aut DiSanti, Michael A. aut Hartogh, Paul aut Tielens, Alexander aut Walker, Christopher K. aut Enthalten in Space science reviews Springer Netherlands, 1962 218(2022), 5 vom: 18. Juli (DE-627)129086606 (DE-600)4860-4 (DE-576)014420724 0038-6308 nnns volume:218 year:2022 number:5 day:18 month:07 https://doi.org/10.1007/s11214-022-00911-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-AST SSG-OPC-AST GBV_ILN_47 AR 218 2022 5 18 07 |
allfieldsSound |
10.1007/s11214-022-00911-5 doi (DE-627)OLC2079184032 (DE-He213)s11214-022-00911-5-p DE-627 ger DE-627 rakwb eng 600 VZ 16,12 ssgn Anderson, Carrie M. verfasserin aut Solar System Science with the Orbiting Astronomical Satellite Investigating Stellar Systems (OASIS) Observatory 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022 Abstract The overarching theme of the Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS), an Astrophysics MIDEX-class mission concept, is Following water from galaxies, through protostellar systems, to Earth’s oceans. The OASIS science objectives address fundamental questions raised in “Pathways to Discovery in Astronomy and Astrophysics for the 2020s (National Academies of Sciences and Medicine, Pathways to Discovery in Astronomy and Astrophysics for the 2020s, 2021, https://doi.org/10.17226/26141, https://www.nap.edu/catalog/26141/pathways-to-discovery-in-astronomy-and-astrophysics-for-the-2020s)” and in “Enduring Quests and Daring Visions” (Kouveliotou et al. in Enduring quests-daring visions (NASA astrophysics in the next three decades), 2014, arXiv:1401.3741), in the areas of: 1) the Interstellar Medium and Planet Formation, 2) Exoplanets, Astrobiology, and the Solar System, and 3) Galaxies. The OASIS science objectives require space-borne observations of galaxies, molecular clouds, protoplanetary disks, and solar system objects utilizing a telescope with a collecting area that is only achievable by large apertures coupled with cryogenic heterodyne receivers. OASIS will deploy an innovative 14-meter inflatable reflector that enables >16× the sensitivity and >4× the angular resolution of Herschel, and complements the short wavelength capabilities of James Webb Space Telescope. The OASIS state-of-the-art cryogenic heterodyne receivers will enable high spectral resolution (resolving power $>10^{6}$) observations at terahertz (THz) frequencies. These frequencies encompass far-IR transitions of water and its isotopologues, HD, and other molecular species, from 660 to 63 μm that are otherwise obscured by Earth’s atmosphere. From observations of the ground state HD line, OASIS will directly measure gas mass in a wide variety of astrophysical objects. Over its one-year baseline mission, OASIS will find water sources as close as the Moon, to galaxies ∼4 billion light years away. This paper reviews the solar system science achievable and planned with OASIS. Solar system science Planetary atmospheres Comets Active icy moons THz spectroscopy Heterodyne spectral resolution Flight mission concept Biver, Nicolas aut Bjoraker, Gordon L. aut Cavalié, Thibault aut Chin, Gordon aut DiSanti, Michael A. aut Hartogh, Paul aut Tielens, Alexander aut Walker, Christopher K. aut Enthalten in Space science reviews Springer Netherlands, 1962 218(2022), 5 vom: 18. Juli (DE-627)129086606 (DE-600)4860-4 (DE-576)014420724 0038-6308 nnns volume:218 year:2022 number:5 day:18 month:07 https://doi.org/10.1007/s11214-022-00911-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-AST SSG-OPC-AST GBV_ILN_47 AR 218 2022 5 18 07 |
language |
English |
source |
Enthalten in Space science reviews 218(2022), 5 vom: 18. Juli volume:218 year:2022 number:5 day:18 month:07 |
sourceStr |
Enthalten in Space science reviews 218(2022), 5 vom: 18. Juli volume:218 year:2022 number:5 day:18 month:07 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Solar system science Planetary atmospheres Comets Active icy moons THz spectroscopy Heterodyne spectral resolution Flight mission concept |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
Space science reviews |
authorswithroles_txt_mv |
Anderson, Carrie M. @@aut@@ Biver, Nicolas @@aut@@ Bjoraker, Gordon L. @@aut@@ Cavalié, Thibault @@aut@@ Chin, Gordon @@aut@@ DiSanti, Michael A. @@aut@@ Hartogh, Paul @@aut@@ Tielens, Alexander @@aut@@ Walker, Christopher K. @@aut@@ |
publishDateDaySort_date |
2022-07-18T00:00:00Z |
hierarchy_top_id |
129086606 |
dewey-sort |
3600 |
id |
OLC2079184032 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2079184032</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506060604.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11214-022-00911-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2079184032</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11214-022-00911-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16,12</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Anderson, Carrie M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Solar System Science with the Orbiting Astronomical Satellite Investigating Stellar Systems (OASIS) Observatory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The overarching theme of the Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS), an Astrophysics MIDEX-class mission concept, is Following water from galaxies, through protostellar systems, to Earth’s oceans. The OASIS science objectives address fundamental questions raised in “Pathways to Discovery in Astronomy and Astrophysics for the 2020s (National Academies of Sciences and Medicine, Pathways to Discovery in Astronomy and Astrophysics for the 2020s, 2021, https://doi.org/10.17226/26141, https://www.nap.edu/catalog/26141/pathways-to-discovery-in-astronomy-and-astrophysics-for-the-2020s)” and in “Enduring Quests and Daring Visions” (Kouveliotou et al. in Enduring quests-daring visions (NASA astrophysics in the next three decades), 2014, arXiv:1401.3741), in the areas of: 1) the Interstellar Medium and Planet Formation, 2) Exoplanets, Astrobiology, and the Solar System, and 3) Galaxies. The OASIS science objectives require space-borne observations of galaxies, molecular clouds, protoplanetary disks, and solar system objects utilizing a telescope with a collecting area that is only achievable by large apertures coupled with cryogenic heterodyne receivers. OASIS will deploy an innovative 14-meter inflatable reflector that enables >16× the sensitivity and >4× the angular resolution of Herschel, and complements the short wavelength capabilities of James Webb Space Telescope. The OASIS state-of-the-art cryogenic heterodyne receivers will enable high spectral resolution (resolving power $>10^{6}$) observations at terahertz (THz) frequencies. These frequencies encompass far-IR transitions of water and its isotopologues, HD, and other molecular species, from 660 to 63 μm that are otherwise obscured by Earth’s atmosphere. From observations of the ground state HD line, OASIS will directly measure gas mass in a wide variety of astrophysical objects. Over its one-year baseline mission, OASIS will find water sources as close as the Moon, to galaxies ∼4 billion light years away. This paper reviews the solar system science achievable and planned with OASIS.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar system science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Planetary atmospheres</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Comets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Active icy moons</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">THz spectroscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heterodyne spectral resolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flight mission concept</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Biver, Nicolas</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bjoraker, Gordon L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cavalié, Thibault</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chin, Gordon</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">DiSanti, Michael A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hartogh, Paul</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tielens, Alexander</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Walker, Christopher K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Space science reviews</subfield><subfield code="d">Springer Netherlands, 1962</subfield><subfield code="g">218(2022), 5 vom: 18. Juli</subfield><subfield code="w">(DE-627)129086606</subfield><subfield code="w">(DE-600)4860-4</subfield><subfield code="w">(DE-576)014420724</subfield><subfield code="x">0038-6308</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:218</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:5</subfield><subfield code="g">day:18</subfield><subfield code="g">month:07</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11214-022-00911-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">218</subfield><subfield code="j">2022</subfield><subfield code="e">5</subfield><subfield code="b">18</subfield><subfield code="c">07</subfield></datafield></record></collection>
|
author |
Anderson, Carrie M. |
spellingShingle |
Anderson, Carrie M. ddc 600 ssgn 16,12 misc Solar system science misc Planetary atmospheres misc Comets misc Active icy moons misc THz spectroscopy misc Heterodyne spectral resolution misc Flight mission concept Solar System Science with the Orbiting Astronomical Satellite Investigating Stellar Systems (OASIS) Observatory |
authorStr |
Anderson, Carrie M. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129086606 |
format |
Article |
dewey-ones |
600 - Technology |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0038-6308 |
topic_title |
600 VZ 16,12 ssgn Solar System Science with the Orbiting Astronomical Satellite Investigating Stellar Systems (OASIS) Observatory Solar system science Planetary atmospheres Comets Active icy moons THz spectroscopy Heterodyne spectral resolution Flight mission concept |
topic |
ddc 600 ssgn 16,12 misc Solar system science misc Planetary atmospheres misc Comets misc Active icy moons misc THz spectroscopy misc Heterodyne spectral resolution misc Flight mission concept |
topic_unstemmed |
ddc 600 ssgn 16,12 misc Solar system science misc Planetary atmospheres misc Comets misc Active icy moons misc THz spectroscopy misc Heterodyne spectral resolution misc Flight mission concept |
topic_browse |
ddc 600 ssgn 16,12 misc Solar system science misc Planetary atmospheres misc Comets misc Active icy moons misc THz spectroscopy misc Heterodyne spectral resolution misc Flight mission concept |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Space science reviews |
hierarchy_parent_id |
129086606 |
dewey-tens |
600 - Technology |
hierarchy_top_title |
Space science reviews |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129086606 (DE-600)4860-4 (DE-576)014420724 |
title |
Solar System Science with the Orbiting Astronomical Satellite Investigating Stellar Systems (OASIS) Observatory |
ctrlnum |
(DE-627)OLC2079184032 (DE-He213)s11214-022-00911-5-p |
title_full |
Solar System Science with the Orbiting Astronomical Satellite Investigating Stellar Systems (OASIS) Observatory |
author_sort |
Anderson, Carrie M. |
journal |
Space science reviews |
journalStr |
Space science reviews |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Anderson, Carrie M. Biver, Nicolas Bjoraker, Gordon L. Cavalié, Thibault Chin, Gordon DiSanti, Michael A. Hartogh, Paul Tielens, Alexander Walker, Christopher K. |
container_volume |
218 |
class |
600 VZ 16,12 ssgn |
format_se |
Aufsätze |
author-letter |
Anderson, Carrie M. |
doi_str_mv |
10.1007/s11214-022-00911-5 |
dewey-full |
600 |
title_sort |
solar system science with the orbiting astronomical satellite investigating stellar systems (oasis) observatory |
title_auth |
Solar System Science with the Orbiting Astronomical Satellite Investigating Stellar Systems (OASIS) Observatory |
abstract |
Abstract The overarching theme of the Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS), an Astrophysics MIDEX-class mission concept, is Following water from galaxies, through protostellar systems, to Earth’s oceans. The OASIS science objectives address fundamental questions raised in “Pathways to Discovery in Astronomy and Astrophysics for the 2020s (National Academies of Sciences and Medicine, Pathways to Discovery in Astronomy and Astrophysics for the 2020s, 2021, https://doi.org/10.17226/26141, https://www.nap.edu/catalog/26141/pathways-to-discovery-in-astronomy-and-astrophysics-for-the-2020s)” and in “Enduring Quests and Daring Visions” (Kouveliotou et al. in Enduring quests-daring visions (NASA astrophysics in the next three decades), 2014, arXiv:1401.3741), in the areas of: 1) the Interstellar Medium and Planet Formation, 2) Exoplanets, Astrobiology, and the Solar System, and 3) Galaxies. The OASIS science objectives require space-borne observations of galaxies, molecular clouds, protoplanetary disks, and solar system objects utilizing a telescope with a collecting area that is only achievable by large apertures coupled with cryogenic heterodyne receivers. OASIS will deploy an innovative 14-meter inflatable reflector that enables >16× the sensitivity and >4× the angular resolution of Herschel, and complements the short wavelength capabilities of James Webb Space Telescope. The OASIS state-of-the-art cryogenic heterodyne receivers will enable high spectral resolution (resolving power $>10^{6}$) observations at terahertz (THz) frequencies. These frequencies encompass far-IR transitions of water and its isotopologues, HD, and other molecular species, from 660 to 63 μm that are otherwise obscured by Earth’s atmosphere. From observations of the ground state HD line, OASIS will directly measure gas mass in a wide variety of astrophysical objects. Over its one-year baseline mission, OASIS will find water sources as close as the Moon, to galaxies ∼4 billion light years away. This paper reviews the solar system science achievable and planned with OASIS. © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022 |
abstractGer |
Abstract The overarching theme of the Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS), an Astrophysics MIDEX-class mission concept, is Following water from galaxies, through protostellar systems, to Earth’s oceans. The OASIS science objectives address fundamental questions raised in “Pathways to Discovery in Astronomy and Astrophysics for the 2020s (National Academies of Sciences and Medicine, Pathways to Discovery in Astronomy and Astrophysics for the 2020s, 2021, https://doi.org/10.17226/26141, https://www.nap.edu/catalog/26141/pathways-to-discovery-in-astronomy-and-astrophysics-for-the-2020s)” and in “Enduring Quests and Daring Visions” (Kouveliotou et al. in Enduring quests-daring visions (NASA astrophysics in the next three decades), 2014, arXiv:1401.3741), in the areas of: 1) the Interstellar Medium and Planet Formation, 2) Exoplanets, Astrobiology, and the Solar System, and 3) Galaxies. The OASIS science objectives require space-borne observations of galaxies, molecular clouds, protoplanetary disks, and solar system objects utilizing a telescope with a collecting area that is only achievable by large apertures coupled with cryogenic heterodyne receivers. OASIS will deploy an innovative 14-meter inflatable reflector that enables >16× the sensitivity and >4× the angular resolution of Herschel, and complements the short wavelength capabilities of James Webb Space Telescope. The OASIS state-of-the-art cryogenic heterodyne receivers will enable high spectral resolution (resolving power $>10^{6}$) observations at terahertz (THz) frequencies. These frequencies encompass far-IR transitions of water and its isotopologues, HD, and other molecular species, from 660 to 63 μm that are otherwise obscured by Earth’s atmosphere. From observations of the ground state HD line, OASIS will directly measure gas mass in a wide variety of astrophysical objects. Over its one-year baseline mission, OASIS will find water sources as close as the Moon, to galaxies ∼4 billion light years away. This paper reviews the solar system science achievable and planned with OASIS. © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022 |
abstract_unstemmed |
Abstract The overarching theme of the Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS), an Astrophysics MIDEX-class mission concept, is Following water from galaxies, through protostellar systems, to Earth’s oceans. The OASIS science objectives address fundamental questions raised in “Pathways to Discovery in Astronomy and Astrophysics for the 2020s (National Academies of Sciences and Medicine, Pathways to Discovery in Astronomy and Astrophysics for the 2020s, 2021, https://doi.org/10.17226/26141, https://www.nap.edu/catalog/26141/pathways-to-discovery-in-astronomy-and-astrophysics-for-the-2020s)” and in “Enduring Quests and Daring Visions” (Kouveliotou et al. in Enduring quests-daring visions (NASA astrophysics in the next three decades), 2014, arXiv:1401.3741), in the areas of: 1) the Interstellar Medium and Planet Formation, 2) Exoplanets, Astrobiology, and the Solar System, and 3) Galaxies. The OASIS science objectives require space-borne observations of galaxies, molecular clouds, protoplanetary disks, and solar system objects utilizing a telescope with a collecting area that is only achievable by large apertures coupled with cryogenic heterodyne receivers. OASIS will deploy an innovative 14-meter inflatable reflector that enables >16× the sensitivity and >4× the angular resolution of Herschel, and complements the short wavelength capabilities of James Webb Space Telescope. The OASIS state-of-the-art cryogenic heterodyne receivers will enable high spectral resolution (resolving power $>10^{6}$) observations at terahertz (THz) frequencies. These frequencies encompass far-IR transitions of water and its isotopologues, HD, and other molecular species, from 660 to 63 μm that are otherwise obscured by Earth’s atmosphere. From observations of the ground state HD line, OASIS will directly measure gas mass in a wide variety of astrophysical objects. Over its one-year baseline mission, OASIS will find water sources as close as the Moon, to galaxies ∼4 billion light years away. This paper reviews the solar system science achievable and planned with OASIS. © This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-AST SSG-OPC-AST GBV_ILN_47 |
container_issue |
5 |
title_short |
Solar System Science with the Orbiting Astronomical Satellite Investigating Stellar Systems (OASIS) Observatory |
url |
https://doi.org/10.1007/s11214-022-00911-5 |
remote_bool |
false |
author2 |
Biver, Nicolas Bjoraker, Gordon L. Cavalié, Thibault Chin, Gordon DiSanti, Michael A. Hartogh, Paul Tielens, Alexander Walker, Christopher K. |
author2Str |
Biver, Nicolas Bjoraker, Gordon L. Cavalié, Thibault Chin, Gordon DiSanti, Michael A. Hartogh, Paul Tielens, Alexander Walker, Christopher K. |
ppnlink |
129086606 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11214-022-00911-5 |
up_date |
2024-07-03T23:52:13.963Z |
_version_ |
1803603918418083840 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2079184032</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506060604.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11214-022-00911-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2079184032</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11214-022-00911-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">16,12</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Anderson, Carrie M.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Solar System Science with the Orbiting Astronomical Satellite Investigating Stellar Systems (OASIS) Observatory</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© This is a U.S. Government work and not under copyright protection in the US; foreign copyright protection may apply 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The overarching theme of the Orbiting Astronomical Satellite for Investigating Stellar Systems (OASIS), an Astrophysics MIDEX-class mission concept, is Following water from galaxies, through protostellar systems, to Earth’s oceans. The OASIS science objectives address fundamental questions raised in “Pathways to Discovery in Astronomy and Astrophysics for the 2020s (National Academies of Sciences and Medicine, Pathways to Discovery in Astronomy and Astrophysics for the 2020s, 2021, https://doi.org/10.17226/26141, https://www.nap.edu/catalog/26141/pathways-to-discovery-in-astronomy-and-astrophysics-for-the-2020s)” and in “Enduring Quests and Daring Visions” (Kouveliotou et al. in Enduring quests-daring visions (NASA astrophysics in the next three decades), 2014, arXiv:1401.3741), in the areas of: 1) the Interstellar Medium and Planet Formation, 2) Exoplanets, Astrobiology, and the Solar System, and 3) Galaxies. The OASIS science objectives require space-borne observations of galaxies, molecular clouds, protoplanetary disks, and solar system objects utilizing a telescope with a collecting area that is only achievable by large apertures coupled with cryogenic heterodyne receivers. OASIS will deploy an innovative 14-meter inflatable reflector that enables >16× the sensitivity and >4× the angular resolution of Herschel, and complements the short wavelength capabilities of James Webb Space Telescope. The OASIS state-of-the-art cryogenic heterodyne receivers will enable high spectral resolution (resolving power $>10^{6}$) observations at terahertz (THz) frequencies. These frequencies encompass far-IR transitions of water and its isotopologues, HD, and other molecular species, from 660 to 63 μm that are otherwise obscured by Earth’s atmosphere. From observations of the ground state HD line, OASIS will directly measure gas mass in a wide variety of astrophysical objects. Over its one-year baseline mission, OASIS will find water sources as close as the Moon, to galaxies ∼4 billion light years away. This paper reviews the solar system science achievable and planned with OASIS.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Solar system science</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Planetary atmospheres</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Comets</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Active icy moons</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">THz spectroscopy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heterodyne spectral resolution</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Flight mission concept</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Biver, Nicolas</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bjoraker, Gordon L.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cavalié, Thibault</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chin, Gordon</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">DiSanti, Michael A.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Hartogh, Paul</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tielens, Alexander</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Walker, Christopher K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Space science reviews</subfield><subfield code="d">Springer Netherlands, 1962</subfield><subfield code="g">218(2022), 5 vom: 18. Juli</subfield><subfield code="w">(DE-627)129086606</subfield><subfield code="w">(DE-600)4860-4</subfield><subfield code="w">(DE-576)014420724</subfield><subfield code="x">0038-6308</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:218</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:5</subfield><subfield code="g">day:18</subfield><subfield code="g">month:07</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11214-022-00911-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-AST</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_47</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">218</subfield><subfield code="j">2022</subfield><subfield code="e">5</subfield><subfield code="b">18</subfield><subfield code="c">07</subfield></datafield></record></collection>
|
score |
7.4022093 |