Near-Field DOA-Range and Polarization Estimation Based on Exact Propagation Model with COLD Arrays
Abstract Many existing near-field source localization algorithms assume simplified models, for example, the Fresnel approximation model. Unlike these works, a new algorithm is herein proposed to localize multiple near-field electromagnetic sources under the exact source-array propagation model. Usin...
Ausführliche Beschreibung
Autor*in: |
Yin, Kejun [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Circuits, systems and signal processing - Springer US, 1982, 41(2022), 9 vom: 23. Apr., Seite 5183-5200 |
---|---|
Übergeordnetes Werk: |
volume:41 ; year:2022 ; number:9 ; day:23 ; month:04 ; pages:5183-5200 |
Links: |
---|
DOI / URN: |
10.1007/s00034-022-02029-z |
---|
Katalog-ID: |
OLC2079204564 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2079204564 | ||
003 | DE-627 | ||
005 | 20230506041415.0 | ||
007 | tu | ||
008 | 221220s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00034-022-02029-z |2 doi | |
035 | |a (DE-627)OLC2079204564 | ||
035 | |a (DE-He213)s00034-022-02029-z-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |q VZ |
100 | 1 | |a Yin, Kejun |e verfasserin |0 (orcid)0000-0003-1057-2531 |4 aut | |
245 | 1 | 0 | |a Near-Field DOA-Range and Polarization Estimation Based on Exact Propagation Model with COLD Arrays |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 | ||
520 | |a Abstract Many existing near-field source localization algorithms assume simplified models, for example, the Fresnel approximation model. Unlike these works, a new algorithm is herein proposed to localize multiple near-field electromagnetic sources under the exact source-array propagation model. Using the data measured by a linear (not necessarily uniform) cocentered orthogonal loop and dipole (COLD) array, three cumulant matrices are firstly defined to construct two matrix pencils. The magnitudes of the two matrix pencils’ generalized eigenvalues are then combined with their phases to extract the direction-of-arrival (DOA) and range estimates of the sources. The key idea of the new algorithm is to use a set of coarse estimates obtained from the magnitudes to resolve the set of ambiguous estimates obtained from the phases. In addition, the proposed algorithm estimates the polarizations without needing the prior estimation of the DOA-range parameters. This proposed algorithm is analytic, requires no iterative computations, and does not need to confine the inter-element spacing to be within a quarter wavelength. | ||
650 | 4 | |a Array signal processing | |
650 | 4 | |a Near-field | |
650 | 4 | |a Source localization | |
650 | 4 | |a Fully polarized | |
650 | 4 | |a Exact propagation model | |
700 | 1 | |a Dai, Yun |4 aut | |
700 | 1 | |a Gao, Chunming |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Circuits, systems and signal processing |d Springer US, 1982 |g 41(2022), 9 vom: 23. Apr., Seite 5183-5200 |w (DE-627)130312134 |w (DE-600)588684-3 |w (DE-576)015889939 |x 0278-081X |7 nnns |
773 | 1 | 8 | |g volume:41 |g year:2022 |g number:9 |g day:23 |g month:04 |g pages:5183-5200 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00034-022-02029-z |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_2244 | ||
951 | |a AR | ||
952 | |d 41 |j 2022 |e 9 |b 23 |c 04 |h 5183-5200 |
author_variant |
k y ky y d yd c g cg |
---|---|
matchkey_str |
article:0278081X:2022----::erildaagadoaiainsiainaeoeatrpgt |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s00034-022-02029-z doi (DE-627)OLC2079204564 (DE-He213)s00034-022-02029-z-p DE-627 ger DE-627 rakwb eng 600 VZ Yin, Kejun verfasserin (orcid)0000-0003-1057-2531 aut Near-Field DOA-Range and Polarization Estimation Based on Exact Propagation Model with COLD Arrays 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract Many existing near-field source localization algorithms assume simplified models, for example, the Fresnel approximation model. Unlike these works, a new algorithm is herein proposed to localize multiple near-field electromagnetic sources under the exact source-array propagation model. Using the data measured by a linear (not necessarily uniform) cocentered orthogonal loop and dipole (COLD) array, three cumulant matrices are firstly defined to construct two matrix pencils. The magnitudes of the two matrix pencils’ generalized eigenvalues are then combined with their phases to extract the direction-of-arrival (DOA) and range estimates of the sources. The key idea of the new algorithm is to use a set of coarse estimates obtained from the magnitudes to resolve the set of ambiguous estimates obtained from the phases. In addition, the proposed algorithm estimates the polarizations without needing the prior estimation of the DOA-range parameters. This proposed algorithm is analytic, requires no iterative computations, and does not need to confine the inter-element spacing to be within a quarter wavelength. Array signal processing Near-field Source localization Fully polarized Exact propagation model Dai, Yun aut Gao, Chunming aut Enthalten in Circuits, systems and signal processing Springer US, 1982 41(2022), 9 vom: 23. Apr., Seite 5183-5200 (DE-627)130312134 (DE-600)588684-3 (DE-576)015889939 0278-081X nnns volume:41 year:2022 number:9 day:23 month:04 pages:5183-5200 https://doi.org/10.1007/s00034-022-02029-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2244 AR 41 2022 9 23 04 5183-5200 |
spelling |
10.1007/s00034-022-02029-z doi (DE-627)OLC2079204564 (DE-He213)s00034-022-02029-z-p DE-627 ger DE-627 rakwb eng 600 VZ Yin, Kejun verfasserin (orcid)0000-0003-1057-2531 aut Near-Field DOA-Range and Polarization Estimation Based on Exact Propagation Model with COLD Arrays 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract Many existing near-field source localization algorithms assume simplified models, for example, the Fresnel approximation model. Unlike these works, a new algorithm is herein proposed to localize multiple near-field electromagnetic sources under the exact source-array propagation model. Using the data measured by a linear (not necessarily uniform) cocentered orthogonal loop and dipole (COLD) array, three cumulant matrices are firstly defined to construct two matrix pencils. The magnitudes of the two matrix pencils’ generalized eigenvalues are then combined with their phases to extract the direction-of-arrival (DOA) and range estimates of the sources. The key idea of the new algorithm is to use a set of coarse estimates obtained from the magnitudes to resolve the set of ambiguous estimates obtained from the phases. In addition, the proposed algorithm estimates the polarizations without needing the prior estimation of the DOA-range parameters. This proposed algorithm is analytic, requires no iterative computations, and does not need to confine the inter-element spacing to be within a quarter wavelength. Array signal processing Near-field Source localization Fully polarized Exact propagation model Dai, Yun aut Gao, Chunming aut Enthalten in Circuits, systems and signal processing Springer US, 1982 41(2022), 9 vom: 23. Apr., Seite 5183-5200 (DE-627)130312134 (DE-600)588684-3 (DE-576)015889939 0278-081X nnns volume:41 year:2022 number:9 day:23 month:04 pages:5183-5200 https://doi.org/10.1007/s00034-022-02029-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2244 AR 41 2022 9 23 04 5183-5200 |
allfields_unstemmed |
10.1007/s00034-022-02029-z doi (DE-627)OLC2079204564 (DE-He213)s00034-022-02029-z-p DE-627 ger DE-627 rakwb eng 600 VZ Yin, Kejun verfasserin (orcid)0000-0003-1057-2531 aut Near-Field DOA-Range and Polarization Estimation Based on Exact Propagation Model with COLD Arrays 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract Many existing near-field source localization algorithms assume simplified models, for example, the Fresnel approximation model. Unlike these works, a new algorithm is herein proposed to localize multiple near-field electromagnetic sources under the exact source-array propagation model. Using the data measured by a linear (not necessarily uniform) cocentered orthogonal loop and dipole (COLD) array, three cumulant matrices are firstly defined to construct two matrix pencils. The magnitudes of the two matrix pencils’ generalized eigenvalues are then combined with their phases to extract the direction-of-arrival (DOA) and range estimates of the sources. The key idea of the new algorithm is to use a set of coarse estimates obtained from the magnitudes to resolve the set of ambiguous estimates obtained from the phases. In addition, the proposed algorithm estimates the polarizations without needing the prior estimation of the DOA-range parameters. This proposed algorithm is analytic, requires no iterative computations, and does not need to confine the inter-element spacing to be within a quarter wavelength. Array signal processing Near-field Source localization Fully polarized Exact propagation model Dai, Yun aut Gao, Chunming aut Enthalten in Circuits, systems and signal processing Springer US, 1982 41(2022), 9 vom: 23. Apr., Seite 5183-5200 (DE-627)130312134 (DE-600)588684-3 (DE-576)015889939 0278-081X nnns volume:41 year:2022 number:9 day:23 month:04 pages:5183-5200 https://doi.org/10.1007/s00034-022-02029-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2244 AR 41 2022 9 23 04 5183-5200 |
allfieldsGer |
10.1007/s00034-022-02029-z doi (DE-627)OLC2079204564 (DE-He213)s00034-022-02029-z-p DE-627 ger DE-627 rakwb eng 600 VZ Yin, Kejun verfasserin (orcid)0000-0003-1057-2531 aut Near-Field DOA-Range and Polarization Estimation Based on Exact Propagation Model with COLD Arrays 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract Many existing near-field source localization algorithms assume simplified models, for example, the Fresnel approximation model. Unlike these works, a new algorithm is herein proposed to localize multiple near-field electromagnetic sources under the exact source-array propagation model. Using the data measured by a linear (not necessarily uniform) cocentered orthogonal loop and dipole (COLD) array, three cumulant matrices are firstly defined to construct two matrix pencils. The magnitudes of the two matrix pencils’ generalized eigenvalues are then combined with their phases to extract the direction-of-arrival (DOA) and range estimates of the sources. The key idea of the new algorithm is to use a set of coarse estimates obtained from the magnitudes to resolve the set of ambiguous estimates obtained from the phases. In addition, the proposed algorithm estimates the polarizations without needing the prior estimation of the DOA-range parameters. This proposed algorithm is analytic, requires no iterative computations, and does not need to confine the inter-element spacing to be within a quarter wavelength. Array signal processing Near-field Source localization Fully polarized Exact propagation model Dai, Yun aut Gao, Chunming aut Enthalten in Circuits, systems and signal processing Springer US, 1982 41(2022), 9 vom: 23. Apr., Seite 5183-5200 (DE-627)130312134 (DE-600)588684-3 (DE-576)015889939 0278-081X nnns volume:41 year:2022 number:9 day:23 month:04 pages:5183-5200 https://doi.org/10.1007/s00034-022-02029-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2244 AR 41 2022 9 23 04 5183-5200 |
allfieldsSound |
10.1007/s00034-022-02029-z doi (DE-627)OLC2079204564 (DE-He213)s00034-022-02029-z-p DE-627 ger DE-627 rakwb eng 600 VZ Yin, Kejun verfasserin (orcid)0000-0003-1057-2531 aut Near-Field DOA-Range and Polarization Estimation Based on Exact Propagation Model with COLD Arrays 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract Many existing near-field source localization algorithms assume simplified models, for example, the Fresnel approximation model. Unlike these works, a new algorithm is herein proposed to localize multiple near-field electromagnetic sources under the exact source-array propagation model. Using the data measured by a linear (not necessarily uniform) cocentered orthogonal loop and dipole (COLD) array, three cumulant matrices are firstly defined to construct two matrix pencils. The magnitudes of the two matrix pencils’ generalized eigenvalues are then combined with their phases to extract the direction-of-arrival (DOA) and range estimates of the sources. The key idea of the new algorithm is to use a set of coarse estimates obtained from the magnitudes to resolve the set of ambiguous estimates obtained from the phases. In addition, the proposed algorithm estimates the polarizations without needing the prior estimation of the DOA-range parameters. This proposed algorithm is analytic, requires no iterative computations, and does not need to confine the inter-element spacing to be within a quarter wavelength. Array signal processing Near-field Source localization Fully polarized Exact propagation model Dai, Yun aut Gao, Chunming aut Enthalten in Circuits, systems and signal processing Springer US, 1982 41(2022), 9 vom: 23. Apr., Seite 5183-5200 (DE-627)130312134 (DE-600)588684-3 (DE-576)015889939 0278-081X nnns volume:41 year:2022 number:9 day:23 month:04 pages:5183-5200 https://doi.org/10.1007/s00034-022-02029-z lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2244 AR 41 2022 9 23 04 5183-5200 |
language |
English |
source |
Enthalten in Circuits, systems and signal processing 41(2022), 9 vom: 23. Apr., Seite 5183-5200 volume:41 year:2022 number:9 day:23 month:04 pages:5183-5200 |
sourceStr |
Enthalten in Circuits, systems and signal processing 41(2022), 9 vom: 23. Apr., Seite 5183-5200 volume:41 year:2022 number:9 day:23 month:04 pages:5183-5200 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Array signal processing Near-field Source localization Fully polarized Exact propagation model |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
Circuits, systems and signal processing |
authorswithroles_txt_mv |
Yin, Kejun @@aut@@ Dai, Yun @@aut@@ Gao, Chunming @@aut@@ |
publishDateDaySort_date |
2022-04-23T00:00:00Z |
hierarchy_top_id |
130312134 |
dewey-sort |
3600 |
id |
OLC2079204564 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2079204564</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506041415.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00034-022-02029-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2079204564</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00034-022-02029-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yin, Kejun</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1057-2531</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Near-Field DOA-Range and Polarization Estimation Based on Exact Propagation Model with COLD Arrays</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Many existing near-field source localization algorithms assume simplified models, for example, the Fresnel approximation model. Unlike these works, a new algorithm is herein proposed to localize multiple near-field electromagnetic sources under the exact source-array propagation model. Using the data measured by a linear (not necessarily uniform) cocentered orthogonal loop and dipole (COLD) array, three cumulant matrices are firstly defined to construct two matrix pencils. The magnitudes of the two matrix pencils’ generalized eigenvalues are then combined with their phases to extract the direction-of-arrival (DOA) and range estimates of the sources. The key idea of the new algorithm is to use a set of coarse estimates obtained from the magnitudes to resolve the set of ambiguous estimates obtained from the phases. In addition, the proposed algorithm estimates the polarizations without needing the prior estimation of the DOA-range parameters. This proposed algorithm is analytic, requires no iterative computations, and does not need to confine the inter-element spacing to be within a quarter wavelength.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Array signal processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Near-field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Source localization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fully polarized</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exact propagation model</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dai, Yun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Chunming</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Circuits, systems and signal processing</subfield><subfield code="d">Springer US, 1982</subfield><subfield code="g">41(2022), 9 vom: 23. Apr., Seite 5183-5200</subfield><subfield code="w">(DE-627)130312134</subfield><subfield code="w">(DE-600)588684-3</subfield><subfield code="w">(DE-576)015889939</subfield><subfield code="x">0278-081X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:41</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:9</subfield><subfield code="g">day:23</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:5183-5200</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00034-022-02029-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2244</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">41</subfield><subfield code="j">2022</subfield><subfield code="e">9</subfield><subfield code="b">23</subfield><subfield code="c">04</subfield><subfield code="h">5183-5200</subfield></datafield></record></collection>
|
author |
Yin, Kejun |
spellingShingle |
Yin, Kejun ddc 600 misc Array signal processing misc Near-field misc Source localization misc Fully polarized misc Exact propagation model Near-Field DOA-Range and Polarization Estimation Based on Exact Propagation Model with COLD Arrays |
authorStr |
Yin, Kejun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130312134 |
format |
Article |
dewey-ones |
600 - Technology |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0278-081X |
topic_title |
600 VZ Near-Field DOA-Range and Polarization Estimation Based on Exact Propagation Model with COLD Arrays Array signal processing Near-field Source localization Fully polarized Exact propagation model |
topic |
ddc 600 misc Array signal processing misc Near-field misc Source localization misc Fully polarized misc Exact propagation model |
topic_unstemmed |
ddc 600 misc Array signal processing misc Near-field misc Source localization misc Fully polarized misc Exact propagation model |
topic_browse |
ddc 600 misc Array signal processing misc Near-field misc Source localization misc Fully polarized misc Exact propagation model |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Circuits, systems and signal processing |
hierarchy_parent_id |
130312134 |
dewey-tens |
600 - Technology |
hierarchy_top_title |
Circuits, systems and signal processing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130312134 (DE-600)588684-3 (DE-576)015889939 |
title |
Near-Field DOA-Range and Polarization Estimation Based on Exact Propagation Model with COLD Arrays |
ctrlnum |
(DE-627)OLC2079204564 (DE-He213)s00034-022-02029-z-p |
title_full |
Near-Field DOA-Range and Polarization Estimation Based on Exact Propagation Model with COLD Arrays |
author_sort |
Yin, Kejun |
journal |
Circuits, systems and signal processing |
journalStr |
Circuits, systems and signal processing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
5183 |
author_browse |
Yin, Kejun Dai, Yun Gao, Chunming |
container_volume |
41 |
class |
600 VZ |
format_se |
Aufsätze |
author-letter |
Yin, Kejun |
doi_str_mv |
10.1007/s00034-022-02029-z |
normlink |
(ORCID)0000-0003-1057-2531 |
normlink_prefix_str_mv |
(orcid)0000-0003-1057-2531 |
dewey-full |
600 |
title_sort |
near-field doa-range and polarization estimation based on exact propagation model with cold arrays |
title_auth |
Near-Field DOA-Range and Polarization Estimation Based on Exact Propagation Model with COLD Arrays |
abstract |
Abstract Many existing near-field source localization algorithms assume simplified models, for example, the Fresnel approximation model. Unlike these works, a new algorithm is herein proposed to localize multiple near-field electromagnetic sources under the exact source-array propagation model. Using the data measured by a linear (not necessarily uniform) cocentered orthogonal loop and dipole (COLD) array, three cumulant matrices are firstly defined to construct two matrix pencils. The magnitudes of the two matrix pencils’ generalized eigenvalues are then combined with their phases to extract the direction-of-arrival (DOA) and range estimates of the sources. The key idea of the new algorithm is to use a set of coarse estimates obtained from the magnitudes to resolve the set of ambiguous estimates obtained from the phases. In addition, the proposed algorithm estimates the polarizations without needing the prior estimation of the DOA-range parameters. This proposed algorithm is analytic, requires no iterative computations, and does not need to confine the inter-element spacing to be within a quarter wavelength. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
abstractGer |
Abstract Many existing near-field source localization algorithms assume simplified models, for example, the Fresnel approximation model. Unlike these works, a new algorithm is herein proposed to localize multiple near-field electromagnetic sources under the exact source-array propagation model. Using the data measured by a linear (not necessarily uniform) cocentered orthogonal loop and dipole (COLD) array, three cumulant matrices are firstly defined to construct two matrix pencils. The magnitudes of the two matrix pencils’ generalized eigenvalues are then combined with their phases to extract the direction-of-arrival (DOA) and range estimates of the sources. The key idea of the new algorithm is to use a set of coarse estimates obtained from the magnitudes to resolve the set of ambiguous estimates obtained from the phases. In addition, the proposed algorithm estimates the polarizations without needing the prior estimation of the DOA-range parameters. This proposed algorithm is analytic, requires no iterative computations, and does not need to confine the inter-element spacing to be within a quarter wavelength. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
abstract_unstemmed |
Abstract Many existing near-field source localization algorithms assume simplified models, for example, the Fresnel approximation model. Unlike these works, a new algorithm is herein proposed to localize multiple near-field electromagnetic sources under the exact source-array propagation model. Using the data measured by a linear (not necessarily uniform) cocentered orthogonal loop and dipole (COLD) array, three cumulant matrices are firstly defined to construct two matrix pencils. The magnitudes of the two matrix pencils’ generalized eigenvalues are then combined with their phases to extract the direction-of-arrival (DOA) and range estimates of the sources. The key idea of the new algorithm is to use a set of coarse estimates obtained from the magnitudes to resolve the set of ambiguous estimates obtained from the phases. In addition, the proposed algorithm estimates the polarizations without needing the prior estimation of the DOA-range parameters. This proposed algorithm is analytic, requires no iterative computations, and does not need to confine the inter-element spacing to be within a quarter wavelength. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2244 |
container_issue |
9 |
title_short |
Near-Field DOA-Range and Polarization Estimation Based on Exact Propagation Model with COLD Arrays |
url |
https://doi.org/10.1007/s00034-022-02029-z |
remote_bool |
false |
author2 |
Dai, Yun Gao, Chunming |
author2Str |
Dai, Yun Gao, Chunming |
ppnlink |
130312134 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00034-022-02029-z |
up_date |
2024-07-03T23:57:31.555Z |
_version_ |
1803604251436384256 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2079204564</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506041415.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00034-022-02029-z</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2079204564</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00034-022-02029-z-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yin, Kejun</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1057-2531</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Near-Field DOA-Range and Polarization Estimation Based on Exact Propagation Model with COLD Arrays</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Many existing near-field source localization algorithms assume simplified models, for example, the Fresnel approximation model. Unlike these works, a new algorithm is herein proposed to localize multiple near-field electromagnetic sources under the exact source-array propagation model. Using the data measured by a linear (not necessarily uniform) cocentered orthogonal loop and dipole (COLD) array, three cumulant matrices are firstly defined to construct two matrix pencils. The magnitudes of the two matrix pencils’ generalized eigenvalues are then combined with their phases to extract the direction-of-arrival (DOA) and range estimates of the sources. The key idea of the new algorithm is to use a set of coarse estimates obtained from the magnitudes to resolve the set of ambiguous estimates obtained from the phases. In addition, the proposed algorithm estimates the polarizations without needing the prior estimation of the DOA-range parameters. This proposed algorithm is analytic, requires no iterative computations, and does not need to confine the inter-element spacing to be within a quarter wavelength.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Array signal processing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Near-field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Source localization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fully polarized</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Exact propagation model</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dai, Yun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Chunming</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Circuits, systems and signal processing</subfield><subfield code="d">Springer US, 1982</subfield><subfield code="g">41(2022), 9 vom: 23. Apr., Seite 5183-5200</subfield><subfield code="w">(DE-627)130312134</subfield><subfield code="w">(DE-600)588684-3</subfield><subfield code="w">(DE-576)015889939</subfield><subfield code="x">0278-081X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:41</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:9</subfield><subfield code="g">day:23</subfield><subfield code="g">month:04</subfield><subfield code="g">pages:5183-5200</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00034-022-02029-z</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2244</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">41</subfield><subfield code="j">2022</subfield><subfield code="e">9</subfield><subfield code="b">23</subfield><subfield code="c">04</subfield><subfield code="h">5183-5200</subfield></datafield></record></collection>
|
score |
7.401288 |