Accuracy of a pre-trained sentiment analysis (SA) classification model on tweets related to emergency response and early recovery assessment: the case of 2019 Albanian earthquake

Abstract Traditionally, earthquake impact assessments have been made via fieldwork by non-governmental organisations (NGO's) sponsored data collection; however, this approach is time-consuming, expensive and often limited. Recently, social media (SM) has become a valuable tool for quickly colle...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Contreras, Diana [verfasserIn]

Wilkinson, Sean

Alterman, Evangeline

Hervás, Javier

Format:

Artikel

Sprache:

Englisch

Erschienen:

2022

Schlagwörter:

Earthquakes

Social media (SM)

Twitter

Sentiment analysis (SA)

Machine learning algorithm

Accuracy (ACC)

Anmerkung:

© The Author(s) 2022

Übergeordnetes Werk:

Enthalten in: Natural hazards - Springer Netherlands, 1988, 113(2022), 1 vom: 23. März, Seite 403-421

Übergeordnetes Werk:

volume:113 ; year:2022 ; number:1 ; day:23 ; month:03 ; pages:403-421

Links:

Volltext

DOI / URN:

10.1007/s11069-022-05307-w

Katalog-ID:

OLC2079247298

Nicht das Richtige dabei?

Schreiben Sie uns!