An approach to classify white blood cells using convolutional neural network optimized by particle swarm optimization algorithm
Abstract Blood cell count is an important parameter in analysing a person’s health condition. White blood corpuscles (leukocytes) are responsible for deciding the immunity system of a person. White blood cells (WBC) are classified into: lymphocytes, monocytes and granulocytes. Granulocytes are sub-c...
Ausführliche Beschreibung
Autor*in: |
Balasubramanian, Kishore [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Neural computing & applications - Springer London, 1993, 34(2022), 18 vom: 03. Mai, Seite 16089-16101 |
---|---|
Übergeordnetes Werk: |
volume:34 ; year:2022 ; number:18 ; day:03 ; month:05 ; pages:16089-16101 |
Links: |
---|
DOI / URN: |
10.1007/s00521-022-07279-1 |
---|
Katalog-ID: |
OLC207940783X |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC207940783X | ||
003 | DE-627 | ||
005 | 20230506060453.0 | ||
007 | tu | ||
008 | 221220s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00521-022-07279-1 |2 doi | |
035 | |a (DE-627)OLC207940783X | ||
035 | |a (DE-He213)s00521-022-07279-1-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
100 | 1 | |a Balasubramanian, Kishore |e verfasserin |0 (orcid)0000-0003-1918-9774 |4 aut | |
245 | 1 | 0 | |a An approach to classify white blood cells using convolutional neural network optimized by particle swarm optimization algorithm |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 | ||
520 | |a Abstract Blood cell count is an important parameter in analysing a person’s health condition. White blood corpuscles (leukocytes) are responsible for deciding the immunity system of a person. White blood cells (WBC) are classified into: lymphocytes, monocytes and granulocytes. Granulocytes are sub-classified into: neutrophils, eosinophils, and basophils. These five types perform different functions in acting as a defence mechanism of the body. Manual investigation performed at laboratories for WBC count is prone to errors due to certain factors like human fatigue, inter-operability errors, etc. Further, there is serious issue in using trained data which cater to the changes in morphology of the white blood corpuscles, in order that trained classifiers could capitalize well. In a way to reduce misclassification rate, a methodology wherein a deep learning approach integrated with an evolutionary algorithm is proposed. Convolutional neural network (CNN) hyper-parameters were optimized using particle swarm optimization algorithm (PSO) to improve the network performance in classifying white blood cells into five types. The method is tested on merged LISC and BCCD datasets which achieved classification accuracy of 99.2% with 94.56% sensitivity, 98.78% specificity and 0.982 AUC. The results are compared with similar proven algorithms like genetic algorithms (GA), differential evolution (DE) and grey wolf optimization (GWO) algorithms. The experimental outcomes demonstrated PSO’s potential in optimizing the CNN hyper-parameters for white blood cell classification enhancing the sensitivity rate and serve a best second opinion in assessing blood cell count. | ||
650 | 4 | |a Leukocytes | |
650 | 4 | |a Blood | |
650 | 4 | |a Classification | |
650 | 4 | |a PSO | |
650 | 4 | |a CNN | |
700 | 1 | |a Ananthamoorthy, N. P. |4 aut | |
700 | 1 | |a Ramya, K. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Neural computing & applications |d Springer London, 1993 |g 34(2022), 18 vom: 03. Mai, Seite 16089-16101 |w (DE-627)165669608 |w (DE-600)1136944-9 |w (DE-576)032873050 |x 0941-0643 |7 nnns |
773 | 1 | 8 | |g volume:34 |g year:2022 |g number:18 |g day:03 |g month:05 |g pages:16089-16101 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00521-022-07279-1 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 34 |j 2022 |e 18 |b 03 |c 05 |h 16089-16101 |
author_variant |
k b kb n p a np npa k r kr |
---|---|
matchkey_str |
article:09410643:2022----::npraholsiyhtbodeluigovltoanuantokpiiebpr |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s00521-022-07279-1 doi (DE-627)OLC207940783X (DE-He213)s00521-022-07279-1-p DE-627 ger DE-627 rakwb eng 004 VZ Balasubramanian, Kishore verfasserin (orcid)0000-0003-1918-9774 aut An approach to classify white blood cells using convolutional neural network optimized by particle swarm optimization algorithm 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 Abstract Blood cell count is an important parameter in analysing a person’s health condition. White blood corpuscles (leukocytes) are responsible for deciding the immunity system of a person. White blood cells (WBC) are classified into: lymphocytes, monocytes and granulocytes. Granulocytes are sub-classified into: neutrophils, eosinophils, and basophils. These five types perform different functions in acting as a defence mechanism of the body. Manual investigation performed at laboratories for WBC count is prone to errors due to certain factors like human fatigue, inter-operability errors, etc. Further, there is serious issue in using trained data which cater to the changes in morphology of the white blood corpuscles, in order that trained classifiers could capitalize well. In a way to reduce misclassification rate, a methodology wherein a deep learning approach integrated with an evolutionary algorithm is proposed. Convolutional neural network (CNN) hyper-parameters were optimized using particle swarm optimization algorithm (PSO) to improve the network performance in classifying white blood cells into five types. The method is tested on merged LISC and BCCD datasets which achieved classification accuracy of 99.2% with 94.56% sensitivity, 98.78% specificity and 0.982 AUC. The results are compared with similar proven algorithms like genetic algorithms (GA), differential evolution (DE) and grey wolf optimization (GWO) algorithms. The experimental outcomes demonstrated PSO’s potential in optimizing the CNN hyper-parameters for white blood cell classification enhancing the sensitivity rate and serve a best second opinion in assessing blood cell count. Leukocytes Blood Classification PSO CNN Ananthamoorthy, N. P. aut Ramya, K. aut Enthalten in Neural computing & applications Springer London, 1993 34(2022), 18 vom: 03. Mai, Seite 16089-16101 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:34 year:2022 number:18 day:03 month:05 pages:16089-16101 https://doi.org/10.1007/s00521-022-07279-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_2018 GBV_ILN_4277 AR 34 2022 18 03 05 16089-16101 |
spelling |
10.1007/s00521-022-07279-1 doi (DE-627)OLC207940783X (DE-He213)s00521-022-07279-1-p DE-627 ger DE-627 rakwb eng 004 VZ Balasubramanian, Kishore verfasserin (orcid)0000-0003-1918-9774 aut An approach to classify white blood cells using convolutional neural network optimized by particle swarm optimization algorithm 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 Abstract Blood cell count is an important parameter in analysing a person’s health condition. White blood corpuscles (leukocytes) are responsible for deciding the immunity system of a person. White blood cells (WBC) are classified into: lymphocytes, monocytes and granulocytes. Granulocytes are sub-classified into: neutrophils, eosinophils, and basophils. These five types perform different functions in acting as a defence mechanism of the body. Manual investigation performed at laboratories for WBC count is prone to errors due to certain factors like human fatigue, inter-operability errors, etc. Further, there is serious issue in using trained data which cater to the changes in morphology of the white blood corpuscles, in order that trained classifiers could capitalize well. In a way to reduce misclassification rate, a methodology wherein a deep learning approach integrated with an evolutionary algorithm is proposed. Convolutional neural network (CNN) hyper-parameters were optimized using particle swarm optimization algorithm (PSO) to improve the network performance in classifying white blood cells into five types. The method is tested on merged LISC and BCCD datasets which achieved classification accuracy of 99.2% with 94.56% sensitivity, 98.78% specificity and 0.982 AUC. The results are compared with similar proven algorithms like genetic algorithms (GA), differential evolution (DE) and grey wolf optimization (GWO) algorithms. The experimental outcomes demonstrated PSO’s potential in optimizing the CNN hyper-parameters for white blood cell classification enhancing the sensitivity rate and serve a best second opinion in assessing blood cell count. Leukocytes Blood Classification PSO CNN Ananthamoorthy, N. P. aut Ramya, K. aut Enthalten in Neural computing & applications Springer London, 1993 34(2022), 18 vom: 03. Mai, Seite 16089-16101 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:34 year:2022 number:18 day:03 month:05 pages:16089-16101 https://doi.org/10.1007/s00521-022-07279-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_2018 GBV_ILN_4277 AR 34 2022 18 03 05 16089-16101 |
allfields_unstemmed |
10.1007/s00521-022-07279-1 doi (DE-627)OLC207940783X (DE-He213)s00521-022-07279-1-p DE-627 ger DE-627 rakwb eng 004 VZ Balasubramanian, Kishore verfasserin (orcid)0000-0003-1918-9774 aut An approach to classify white blood cells using convolutional neural network optimized by particle swarm optimization algorithm 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 Abstract Blood cell count is an important parameter in analysing a person’s health condition. White blood corpuscles (leukocytes) are responsible for deciding the immunity system of a person. White blood cells (WBC) are classified into: lymphocytes, monocytes and granulocytes. Granulocytes are sub-classified into: neutrophils, eosinophils, and basophils. These five types perform different functions in acting as a defence mechanism of the body. Manual investigation performed at laboratories for WBC count is prone to errors due to certain factors like human fatigue, inter-operability errors, etc. Further, there is serious issue in using trained data which cater to the changes in morphology of the white blood corpuscles, in order that trained classifiers could capitalize well. In a way to reduce misclassification rate, a methodology wherein a deep learning approach integrated with an evolutionary algorithm is proposed. Convolutional neural network (CNN) hyper-parameters were optimized using particle swarm optimization algorithm (PSO) to improve the network performance in classifying white blood cells into five types. The method is tested on merged LISC and BCCD datasets which achieved classification accuracy of 99.2% with 94.56% sensitivity, 98.78% specificity and 0.982 AUC. The results are compared with similar proven algorithms like genetic algorithms (GA), differential evolution (DE) and grey wolf optimization (GWO) algorithms. The experimental outcomes demonstrated PSO’s potential in optimizing the CNN hyper-parameters for white blood cell classification enhancing the sensitivity rate and serve a best second opinion in assessing blood cell count. Leukocytes Blood Classification PSO CNN Ananthamoorthy, N. P. aut Ramya, K. aut Enthalten in Neural computing & applications Springer London, 1993 34(2022), 18 vom: 03. Mai, Seite 16089-16101 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:34 year:2022 number:18 day:03 month:05 pages:16089-16101 https://doi.org/10.1007/s00521-022-07279-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_2018 GBV_ILN_4277 AR 34 2022 18 03 05 16089-16101 |
allfieldsGer |
10.1007/s00521-022-07279-1 doi (DE-627)OLC207940783X (DE-He213)s00521-022-07279-1-p DE-627 ger DE-627 rakwb eng 004 VZ Balasubramanian, Kishore verfasserin (orcid)0000-0003-1918-9774 aut An approach to classify white blood cells using convolutional neural network optimized by particle swarm optimization algorithm 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 Abstract Blood cell count is an important parameter in analysing a person’s health condition. White blood corpuscles (leukocytes) are responsible for deciding the immunity system of a person. White blood cells (WBC) are classified into: lymphocytes, monocytes and granulocytes. Granulocytes are sub-classified into: neutrophils, eosinophils, and basophils. These five types perform different functions in acting as a defence mechanism of the body. Manual investigation performed at laboratories for WBC count is prone to errors due to certain factors like human fatigue, inter-operability errors, etc. Further, there is serious issue in using trained data which cater to the changes in morphology of the white blood corpuscles, in order that trained classifiers could capitalize well. In a way to reduce misclassification rate, a methodology wherein a deep learning approach integrated with an evolutionary algorithm is proposed. Convolutional neural network (CNN) hyper-parameters were optimized using particle swarm optimization algorithm (PSO) to improve the network performance in classifying white blood cells into five types. The method is tested on merged LISC and BCCD datasets which achieved classification accuracy of 99.2% with 94.56% sensitivity, 98.78% specificity and 0.982 AUC. The results are compared with similar proven algorithms like genetic algorithms (GA), differential evolution (DE) and grey wolf optimization (GWO) algorithms. The experimental outcomes demonstrated PSO’s potential in optimizing the CNN hyper-parameters for white blood cell classification enhancing the sensitivity rate and serve a best second opinion in assessing blood cell count. Leukocytes Blood Classification PSO CNN Ananthamoorthy, N. P. aut Ramya, K. aut Enthalten in Neural computing & applications Springer London, 1993 34(2022), 18 vom: 03. Mai, Seite 16089-16101 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:34 year:2022 number:18 day:03 month:05 pages:16089-16101 https://doi.org/10.1007/s00521-022-07279-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_2018 GBV_ILN_4277 AR 34 2022 18 03 05 16089-16101 |
allfieldsSound |
10.1007/s00521-022-07279-1 doi (DE-627)OLC207940783X (DE-He213)s00521-022-07279-1-p DE-627 ger DE-627 rakwb eng 004 VZ Balasubramanian, Kishore verfasserin (orcid)0000-0003-1918-9774 aut An approach to classify white blood cells using convolutional neural network optimized by particle swarm optimization algorithm 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 Abstract Blood cell count is an important parameter in analysing a person’s health condition. White blood corpuscles (leukocytes) are responsible for deciding the immunity system of a person. White blood cells (WBC) are classified into: lymphocytes, monocytes and granulocytes. Granulocytes are sub-classified into: neutrophils, eosinophils, and basophils. These five types perform different functions in acting as a defence mechanism of the body. Manual investigation performed at laboratories for WBC count is prone to errors due to certain factors like human fatigue, inter-operability errors, etc. Further, there is serious issue in using trained data which cater to the changes in morphology of the white blood corpuscles, in order that trained classifiers could capitalize well. In a way to reduce misclassification rate, a methodology wherein a deep learning approach integrated with an evolutionary algorithm is proposed. Convolutional neural network (CNN) hyper-parameters were optimized using particle swarm optimization algorithm (PSO) to improve the network performance in classifying white blood cells into five types. The method is tested on merged LISC and BCCD datasets which achieved classification accuracy of 99.2% with 94.56% sensitivity, 98.78% specificity and 0.982 AUC. The results are compared with similar proven algorithms like genetic algorithms (GA), differential evolution (DE) and grey wolf optimization (GWO) algorithms. The experimental outcomes demonstrated PSO’s potential in optimizing the CNN hyper-parameters for white blood cell classification enhancing the sensitivity rate and serve a best second opinion in assessing blood cell count. Leukocytes Blood Classification PSO CNN Ananthamoorthy, N. P. aut Ramya, K. aut Enthalten in Neural computing & applications Springer London, 1993 34(2022), 18 vom: 03. Mai, Seite 16089-16101 (DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 0941-0643 nnns volume:34 year:2022 number:18 day:03 month:05 pages:16089-16101 https://doi.org/10.1007/s00521-022-07279-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_2018 GBV_ILN_4277 AR 34 2022 18 03 05 16089-16101 |
language |
English |
source |
Enthalten in Neural computing & applications 34(2022), 18 vom: 03. Mai, Seite 16089-16101 volume:34 year:2022 number:18 day:03 month:05 pages:16089-16101 |
sourceStr |
Enthalten in Neural computing & applications 34(2022), 18 vom: 03. Mai, Seite 16089-16101 volume:34 year:2022 number:18 day:03 month:05 pages:16089-16101 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Leukocytes Blood Classification PSO CNN |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Neural computing & applications |
authorswithroles_txt_mv |
Balasubramanian, Kishore @@aut@@ Ananthamoorthy, N. P. @@aut@@ Ramya, K. @@aut@@ |
publishDateDaySort_date |
2022-05-03T00:00:00Z |
hierarchy_top_id |
165669608 |
dewey-sort |
14 |
id |
OLC207940783X |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC207940783X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506060453.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00521-022-07279-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC207940783X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00521-022-07279-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Balasubramanian, Kishore</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1918-9774</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An approach to classify white blood cells using convolutional neural network optimized by particle swarm optimization algorithm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Blood cell count is an important parameter in analysing a person’s health condition. White blood corpuscles (leukocytes) are responsible for deciding the immunity system of a person. White blood cells (WBC) are classified into: lymphocytes, monocytes and granulocytes. Granulocytes are sub-classified into: neutrophils, eosinophils, and basophils. These five types perform different functions in acting as a defence mechanism of the body. Manual investigation performed at laboratories for WBC count is prone to errors due to certain factors like human fatigue, inter-operability errors, etc. Further, there is serious issue in using trained data which cater to the changes in morphology of the white blood corpuscles, in order that trained classifiers could capitalize well. In a way to reduce misclassification rate, a methodology wherein a deep learning approach integrated with an evolutionary algorithm is proposed. Convolutional neural network (CNN) hyper-parameters were optimized using particle swarm optimization algorithm (PSO) to improve the network performance in classifying white blood cells into five types. The method is tested on merged LISC and BCCD datasets which achieved classification accuracy of 99.2% with 94.56% sensitivity, 98.78% specificity and 0.982 AUC. The results are compared with similar proven algorithms like genetic algorithms (GA), differential evolution (DE) and grey wolf optimization (GWO) algorithms. The experimental outcomes demonstrated PSO’s potential in optimizing the CNN hyper-parameters for white blood cell classification enhancing the sensitivity rate and serve a best second opinion in assessing blood cell count.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Leukocytes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blood</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PSO</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CNN</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ananthamoorthy, N. P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ramya, K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Neural computing & applications</subfield><subfield code="d">Springer London, 1993</subfield><subfield code="g">34(2022), 18 vom: 03. Mai, Seite 16089-16101</subfield><subfield code="w">(DE-627)165669608</subfield><subfield code="w">(DE-600)1136944-9</subfield><subfield code="w">(DE-576)032873050</subfield><subfield code="x">0941-0643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:34</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:18</subfield><subfield code="g">day:03</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:16089-16101</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00521-022-07279-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">34</subfield><subfield code="j">2022</subfield><subfield code="e">18</subfield><subfield code="b">03</subfield><subfield code="c">05</subfield><subfield code="h">16089-16101</subfield></datafield></record></collection>
|
author |
Balasubramanian, Kishore |
spellingShingle |
Balasubramanian, Kishore ddc 004 misc Leukocytes misc Blood misc Classification misc PSO misc CNN An approach to classify white blood cells using convolutional neural network optimized by particle swarm optimization algorithm |
authorStr |
Balasubramanian, Kishore |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)165669608 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0941-0643 |
topic_title |
004 VZ An approach to classify white blood cells using convolutional neural network optimized by particle swarm optimization algorithm Leukocytes Blood Classification PSO CNN |
topic |
ddc 004 misc Leukocytes misc Blood misc Classification misc PSO misc CNN |
topic_unstemmed |
ddc 004 misc Leukocytes misc Blood misc Classification misc PSO misc CNN |
topic_browse |
ddc 004 misc Leukocytes misc Blood misc Classification misc PSO misc CNN |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Neural computing & applications |
hierarchy_parent_id |
165669608 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Neural computing & applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)165669608 (DE-600)1136944-9 (DE-576)032873050 |
title |
An approach to classify white blood cells using convolutional neural network optimized by particle swarm optimization algorithm |
ctrlnum |
(DE-627)OLC207940783X (DE-He213)s00521-022-07279-1-p |
title_full |
An approach to classify white blood cells using convolutional neural network optimized by particle swarm optimization algorithm |
author_sort |
Balasubramanian, Kishore |
journal |
Neural computing & applications |
journalStr |
Neural computing & applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
16089 |
author_browse |
Balasubramanian, Kishore Ananthamoorthy, N. P. Ramya, K. |
container_volume |
34 |
class |
004 VZ |
format_se |
Aufsätze |
author-letter |
Balasubramanian, Kishore |
doi_str_mv |
10.1007/s00521-022-07279-1 |
normlink |
(ORCID)0000-0003-1918-9774 |
normlink_prefix_str_mv |
(orcid)0000-0003-1918-9774 |
dewey-full |
004 |
title_sort |
an approach to classify white blood cells using convolutional neural network optimized by particle swarm optimization algorithm |
title_auth |
An approach to classify white blood cells using convolutional neural network optimized by particle swarm optimization algorithm |
abstract |
Abstract Blood cell count is an important parameter in analysing a person’s health condition. White blood corpuscles (leukocytes) are responsible for deciding the immunity system of a person. White blood cells (WBC) are classified into: lymphocytes, monocytes and granulocytes. Granulocytes are sub-classified into: neutrophils, eosinophils, and basophils. These five types perform different functions in acting as a defence mechanism of the body. Manual investigation performed at laboratories for WBC count is prone to errors due to certain factors like human fatigue, inter-operability errors, etc. Further, there is serious issue in using trained data which cater to the changes in morphology of the white blood corpuscles, in order that trained classifiers could capitalize well. In a way to reduce misclassification rate, a methodology wherein a deep learning approach integrated with an evolutionary algorithm is proposed. Convolutional neural network (CNN) hyper-parameters were optimized using particle swarm optimization algorithm (PSO) to improve the network performance in classifying white blood cells into five types. The method is tested on merged LISC and BCCD datasets which achieved classification accuracy of 99.2% with 94.56% sensitivity, 98.78% specificity and 0.982 AUC. The results are compared with similar proven algorithms like genetic algorithms (GA), differential evolution (DE) and grey wolf optimization (GWO) algorithms. The experimental outcomes demonstrated PSO’s potential in optimizing the CNN hyper-parameters for white blood cell classification enhancing the sensitivity rate and serve a best second opinion in assessing blood cell count. © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 |
abstractGer |
Abstract Blood cell count is an important parameter in analysing a person’s health condition. White blood corpuscles (leukocytes) are responsible for deciding the immunity system of a person. White blood cells (WBC) are classified into: lymphocytes, monocytes and granulocytes. Granulocytes are sub-classified into: neutrophils, eosinophils, and basophils. These five types perform different functions in acting as a defence mechanism of the body. Manual investigation performed at laboratories for WBC count is prone to errors due to certain factors like human fatigue, inter-operability errors, etc. Further, there is serious issue in using trained data which cater to the changes in morphology of the white blood corpuscles, in order that trained classifiers could capitalize well. In a way to reduce misclassification rate, a methodology wherein a deep learning approach integrated with an evolutionary algorithm is proposed. Convolutional neural network (CNN) hyper-parameters were optimized using particle swarm optimization algorithm (PSO) to improve the network performance in classifying white blood cells into five types. The method is tested on merged LISC and BCCD datasets which achieved classification accuracy of 99.2% with 94.56% sensitivity, 98.78% specificity and 0.982 AUC. The results are compared with similar proven algorithms like genetic algorithms (GA), differential evolution (DE) and grey wolf optimization (GWO) algorithms. The experimental outcomes demonstrated PSO’s potential in optimizing the CNN hyper-parameters for white blood cell classification enhancing the sensitivity rate and serve a best second opinion in assessing blood cell count. © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 |
abstract_unstemmed |
Abstract Blood cell count is an important parameter in analysing a person’s health condition. White blood corpuscles (leukocytes) are responsible for deciding the immunity system of a person. White blood cells (WBC) are classified into: lymphocytes, monocytes and granulocytes. Granulocytes are sub-classified into: neutrophils, eosinophils, and basophils. These five types perform different functions in acting as a defence mechanism of the body. Manual investigation performed at laboratories for WBC count is prone to errors due to certain factors like human fatigue, inter-operability errors, etc. Further, there is serious issue in using trained data which cater to the changes in morphology of the white blood corpuscles, in order that trained classifiers could capitalize well. In a way to reduce misclassification rate, a methodology wherein a deep learning approach integrated with an evolutionary algorithm is proposed. Convolutional neural network (CNN) hyper-parameters were optimized using particle swarm optimization algorithm (PSO) to improve the network performance in classifying white blood cells into five types. The method is tested on merged LISC and BCCD datasets which achieved classification accuracy of 99.2% with 94.56% sensitivity, 98.78% specificity and 0.982 AUC. The results are compared with similar proven algorithms like genetic algorithms (GA), differential evolution (DE) and grey wolf optimization (GWO) algorithms. The experimental outcomes demonstrated PSO’s potential in optimizing the CNN hyper-parameters for white blood cell classification enhancing the sensitivity rate and serve a best second opinion in assessing blood cell count. © The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
18 |
title_short |
An approach to classify white blood cells using convolutional neural network optimized by particle swarm optimization algorithm |
url |
https://doi.org/10.1007/s00521-022-07279-1 |
remote_bool |
false |
author2 |
Ananthamoorthy, N. P. Ramya, K. |
author2Str |
Ananthamoorthy, N. P. Ramya, K. |
ppnlink |
165669608 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00521-022-07279-1 |
up_date |
2024-07-04T00:49:22.356Z |
_version_ |
1803607513347653632 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC207940783X</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506060453.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00521-022-07279-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC207940783X</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00521-022-07279-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Balasubramanian, Kishore</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1918-9774</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">An approach to classify white blood cells using convolutional neural network optimized by particle swarm optimization algorithm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Blood cell count is an important parameter in analysing a person’s health condition. White blood corpuscles (leukocytes) are responsible for deciding the immunity system of a person. White blood cells (WBC) are classified into: lymphocytes, monocytes and granulocytes. Granulocytes are sub-classified into: neutrophils, eosinophils, and basophils. These five types perform different functions in acting as a defence mechanism of the body. Manual investigation performed at laboratories for WBC count is prone to errors due to certain factors like human fatigue, inter-operability errors, etc. Further, there is serious issue in using trained data which cater to the changes in morphology of the white blood corpuscles, in order that trained classifiers could capitalize well. In a way to reduce misclassification rate, a methodology wherein a deep learning approach integrated with an evolutionary algorithm is proposed. Convolutional neural network (CNN) hyper-parameters were optimized using particle swarm optimization algorithm (PSO) to improve the network performance in classifying white blood cells into five types. The method is tested on merged LISC and BCCD datasets which achieved classification accuracy of 99.2% with 94.56% sensitivity, 98.78% specificity and 0.982 AUC. The results are compared with similar proven algorithms like genetic algorithms (GA), differential evolution (DE) and grey wolf optimization (GWO) algorithms. The experimental outcomes demonstrated PSO’s potential in optimizing the CNN hyper-parameters for white blood cell classification enhancing the sensitivity rate and serve a best second opinion in assessing blood cell count.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Leukocytes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blood</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Classification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">PSO</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">CNN</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ananthamoorthy, N. P.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ramya, K.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Neural computing & applications</subfield><subfield code="d">Springer London, 1993</subfield><subfield code="g">34(2022), 18 vom: 03. Mai, Seite 16089-16101</subfield><subfield code="w">(DE-627)165669608</subfield><subfield code="w">(DE-600)1136944-9</subfield><subfield code="w">(DE-576)032873050</subfield><subfield code="x">0941-0643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:34</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:18</subfield><subfield code="g">day:03</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:16089-16101</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00521-022-07279-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">34</subfield><subfield code="j">2022</subfield><subfield code="e">18</subfield><subfield code="b">03</subfield><subfield code="c">05</subfield><subfield code="h">16089-16101</subfield></datafield></record></collection>
|
score |
7.4019356 |