Estimates of the collective immunity to COVID-19 derived from a stochastic cellular automaton based framework
Abstract In the context of the propagation of infectious diseases, when a sufficient degree of immunisation is achieved within a population, the spread of the disease is ended or significantly decreased, leading to collective immunity, meaning the indirect protection given by immune individuals to s...
Ausführliche Beschreibung
Autor*in: |
Lima, Isaías [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Nature B.V. 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Natural computing - Springer Netherlands, 2002, 21(2022), 3 vom: 18. Juni, Seite 449-461 |
---|---|
Übergeordnetes Werk: |
volume:21 ; year:2022 ; number:3 ; day:18 ; month:06 ; pages:449-461 |
Links: |
---|
DOI / URN: |
10.1007/s11047-022-09893-3 |
---|
Katalog-ID: |
OLC2079438727 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2079438727 | ||
003 | DE-627 | ||
005 | 20230517032001.0 | ||
007 | tu | ||
008 | 221220s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11047-022-09893-3 |2 doi | |
035 | |a (DE-627)OLC2079438727 | ||
035 | |a (DE-He213)s11047-022-09893-3-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 570 |a 004 |q VZ |
084 | |a 12 |2 ssgn | ||
084 | |a 54.28$jNichtelektronische Datenverarbeitung |2 bkl | ||
084 | |a 54.72$jKünstliche Intelligenz |2 bkl | ||
100 | 1 | |a Lima, Isaías |e verfasserin |0 (orcid)0000-0003-0407-4683 |4 aut | |
245 | 1 | 0 | |a Estimates of the collective immunity to COVID-19 derived from a stochastic cellular automaton based framework |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Nature B.V. 2022 | ||
520 | |a Abstract In the context of the propagation of infectious diseases, when a sufficient degree of immunisation is achieved within a population, the spread of the disease is ended or significantly decreased, leading to collective immunity, meaning the indirect protection given by immune individuals to susceptible individuals. Here we describe the estimates of the collective immunity to COVID-19 from a stochastic cellular automaton based model designed to emulate the spread of SARS-CoV-2 in a population of static individuals interacting only via a Moore neighbourhood of radius one, with a view to analyze the impact of initially immune individuals on the dynamics of COVID-19. This impact was measured by comparing a progression of initial immunity ratio—the percentage of immunised individuals before patient zero starts infecting its neighbourhood—from 0 to 95% of the initial population, with the number of susceptible individuals not contaminated, the peak value of active cases, the total number of deaths and the emulated pandemic duration in days. The influence of this range of immunities over the model was tested with different parameterisations regarding the uncertainties involved in the model such as the durations of the cellular automaton states, the contamination contributions of each state and the state transition probabilities. A collective immunity threshold of $$55\% \pm 2.5\%$$ on average was obtained from this procedure, under four distinct parameterisations, which is in tune with the estimates of the currently available medical literature, even increasing the uncertainty of the input parameters. | ||
650 | 4 | |a Stochastic cellular automaton | |
650 | 4 | |a COVID-19 | |
650 | 4 | |a SARS-CoV-2 | |
650 | 4 | |a Contagious disease dynamic | |
650 | 4 | |a collective immunity | |
700 | 1 | |a Balbi, Pedro Paulo |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Natural computing |d Springer Netherlands, 2002 |g 21(2022), 3 vom: 18. Juni, Seite 449-461 |w (DE-627)36367487X |w (DE-600)2110258-2 |w (DE-576)9363674878 |x 1567-7818 |7 nnns |
773 | 1 | 8 | |g volume:21 |g year:2022 |g number:3 |g day:18 |g month:06 |g pages:449-461 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11047-022-09893-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
936 | b | k | |a 54.28$jNichtelektronische Datenverarbeitung |q VZ |0 106418858 |0 (DE-625)106418858 |
936 | b | k | |a 54.72$jKünstliche Intelligenz |q VZ |0 10641240X |0 (DE-625)10641240X |
951 | |a AR | ||
952 | |d 21 |j 2022 |e 3 |b 18 |c 06 |h 449-461 |
author_variant |
i l il p p b pp ppb |
---|---|
matchkey_str |
article:15677818:2022----::siaeoteolciemuiyooi1drvdrmsohsiclu |
hierarchy_sort_str |
2022 |
bklnumber |
54.28$jNichtelektronische Datenverarbeitung 54.72$jKünstliche Intelligenz |
publishDate |
2022 |
allfields |
10.1007/s11047-022-09893-3 doi (DE-627)OLC2079438727 (DE-He213)s11047-022-09893-3-p DE-627 ger DE-627 rakwb eng 570 004 VZ 12 ssgn 54.28$jNichtelektronische Datenverarbeitung bkl 54.72$jKünstliche Intelligenz bkl Lima, Isaías verfasserin (orcid)0000-0003-0407-4683 aut Estimates of the collective immunity to COVID-19 derived from a stochastic cellular automaton based framework 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2022 Abstract In the context of the propagation of infectious diseases, when a sufficient degree of immunisation is achieved within a population, the spread of the disease is ended or significantly decreased, leading to collective immunity, meaning the indirect protection given by immune individuals to susceptible individuals. Here we describe the estimates of the collective immunity to COVID-19 from a stochastic cellular automaton based model designed to emulate the spread of SARS-CoV-2 in a population of static individuals interacting only via a Moore neighbourhood of radius one, with a view to analyze the impact of initially immune individuals on the dynamics of COVID-19. This impact was measured by comparing a progression of initial immunity ratio—the percentage of immunised individuals before patient zero starts infecting its neighbourhood—from 0 to 95% of the initial population, with the number of susceptible individuals not contaminated, the peak value of active cases, the total number of deaths and the emulated pandemic duration in days. The influence of this range of immunities over the model was tested with different parameterisations regarding the uncertainties involved in the model such as the durations of the cellular automaton states, the contamination contributions of each state and the state transition probabilities. A collective immunity threshold of $$55\% \pm 2.5\%$$ on average was obtained from this procedure, under four distinct parameterisations, which is in tune with the estimates of the currently available medical literature, even increasing the uncertainty of the input parameters. Stochastic cellular automaton COVID-19 SARS-CoV-2 Contagious disease dynamic collective immunity Balbi, Pedro Paulo aut Enthalten in Natural computing Springer Netherlands, 2002 21(2022), 3 vom: 18. Juni, Seite 449-461 (DE-627)36367487X (DE-600)2110258-2 (DE-576)9363674878 1567-7818 nnns volume:21 year:2022 number:3 day:18 month:06 pages:449-461 https://doi.org/10.1007/s11047-022-09893-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 54.28$jNichtelektronische Datenverarbeitung VZ 106418858 (DE-625)106418858 54.72$jKünstliche Intelligenz VZ 10641240X (DE-625)10641240X AR 21 2022 3 18 06 449-461 |
spelling |
10.1007/s11047-022-09893-3 doi (DE-627)OLC2079438727 (DE-He213)s11047-022-09893-3-p DE-627 ger DE-627 rakwb eng 570 004 VZ 12 ssgn 54.28$jNichtelektronische Datenverarbeitung bkl 54.72$jKünstliche Intelligenz bkl Lima, Isaías verfasserin (orcid)0000-0003-0407-4683 aut Estimates of the collective immunity to COVID-19 derived from a stochastic cellular automaton based framework 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2022 Abstract In the context of the propagation of infectious diseases, when a sufficient degree of immunisation is achieved within a population, the spread of the disease is ended or significantly decreased, leading to collective immunity, meaning the indirect protection given by immune individuals to susceptible individuals. Here we describe the estimates of the collective immunity to COVID-19 from a stochastic cellular automaton based model designed to emulate the spread of SARS-CoV-2 in a population of static individuals interacting only via a Moore neighbourhood of radius one, with a view to analyze the impact of initially immune individuals on the dynamics of COVID-19. This impact was measured by comparing a progression of initial immunity ratio—the percentage of immunised individuals before patient zero starts infecting its neighbourhood—from 0 to 95% of the initial population, with the number of susceptible individuals not contaminated, the peak value of active cases, the total number of deaths and the emulated pandemic duration in days. The influence of this range of immunities over the model was tested with different parameterisations regarding the uncertainties involved in the model such as the durations of the cellular automaton states, the contamination contributions of each state and the state transition probabilities. A collective immunity threshold of $$55\% \pm 2.5\%$$ on average was obtained from this procedure, under four distinct parameterisations, which is in tune with the estimates of the currently available medical literature, even increasing the uncertainty of the input parameters. Stochastic cellular automaton COVID-19 SARS-CoV-2 Contagious disease dynamic collective immunity Balbi, Pedro Paulo aut Enthalten in Natural computing Springer Netherlands, 2002 21(2022), 3 vom: 18. Juni, Seite 449-461 (DE-627)36367487X (DE-600)2110258-2 (DE-576)9363674878 1567-7818 nnns volume:21 year:2022 number:3 day:18 month:06 pages:449-461 https://doi.org/10.1007/s11047-022-09893-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 54.28$jNichtelektronische Datenverarbeitung VZ 106418858 (DE-625)106418858 54.72$jKünstliche Intelligenz VZ 10641240X (DE-625)10641240X AR 21 2022 3 18 06 449-461 |
allfields_unstemmed |
10.1007/s11047-022-09893-3 doi (DE-627)OLC2079438727 (DE-He213)s11047-022-09893-3-p DE-627 ger DE-627 rakwb eng 570 004 VZ 12 ssgn 54.28$jNichtelektronische Datenverarbeitung bkl 54.72$jKünstliche Intelligenz bkl Lima, Isaías verfasserin (orcid)0000-0003-0407-4683 aut Estimates of the collective immunity to COVID-19 derived from a stochastic cellular automaton based framework 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2022 Abstract In the context of the propagation of infectious diseases, when a sufficient degree of immunisation is achieved within a population, the spread of the disease is ended or significantly decreased, leading to collective immunity, meaning the indirect protection given by immune individuals to susceptible individuals. Here we describe the estimates of the collective immunity to COVID-19 from a stochastic cellular automaton based model designed to emulate the spread of SARS-CoV-2 in a population of static individuals interacting only via a Moore neighbourhood of radius one, with a view to analyze the impact of initially immune individuals on the dynamics of COVID-19. This impact was measured by comparing a progression of initial immunity ratio—the percentage of immunised individuals before patient zero starts infecting its neighbourhood—from 0 to 95% of the initial population, with the number of susceptible individuals not contaminated, the peak value of active cases, the total number of deaths and the emulated pandemic duration in days. The influence of this range of immunities over the model was tested with different parameterisations regarding the uncertainties involved in the model such as the durations of the cellular automaton states, the contamination contributions of each state and the state transition probabilities. A collective immunity threshold of $$55\% \pm 2.5\%$$ on average was obtained from this procedure, under four distinct parameterisations, which is in tune with the estimates of the currently available medical literature, even increasing the uncertainty of the input parameters. Stochastic cellular automaton COVID-19 SARS-CoV-2 Contagious disease dynamic collective immunity Balbi, Pedro Paulo aut Enthalten in Natural computing Springer Netherlands, 2002 21(2022), 3 vom: 18. Juni, Seite 449-461 (DE-627)36367487X (DE-600)2110258-2 (DE-576)9363674878 1567-7818 nnns volume:21 year:2022 number:3 day:18 month:06 pages:449-461 https://doi.org/10.1007/s11047-022-09893-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 54.28$jNichtelektronische Datenverarbeitung VZ 106418858 (DE-625)106418858 54.72$jKünstliche Intelligenz VZ 10641240X (DE-625)10641240X AR 21 2022 3 18 06 449-461 |
allfieldsGer |
10.1007/s11047-022-09893-3 doi (DE-627)OLC2079438727 (DE-He213)s11047-022-09893-3-p DE-627 ger DE-627 rakwb eng 570 004 VZ 12 ssgn 54.28$jNichtelektronische Datenverarbeitung bkl 54.72$jKünstliche Intelligenz bkl Lima, Isaías verfasserin (orcid)0000-0003-0407-4683 aut Estimates of the collective immunity to COVID-19 derived from a stochastic cellular automaton based framework 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2022 Abstract In the context of the propagation of infectious diseases, when a sufficient degree of immunisation is achieved within a population, the spread of the disease is ended or significantly decreased, leading to collective immunity, meaning the indirect protection given by immune individuals to susceptible individuals. Here we describe the estimates of the collective immunity to COVID-19 from a stochastic cellular automaton based model designed to emulate the spread of SARS-CoV-2 in a population of static individuals interacting only via a Moore neighbourhood of radius one, with a view to analyze the impact of initially immune individuals on the dynamics of COVID-19. This impact was measured by comparing a progression of initial immunity ratio—the percentage of immunised individuals before patient zero starts infecting its neighbourhood—from 0 to 95% of the initial population, with the number of susceptible individuals not contaminated, the peak value of active cases, the total number of deaths and the emulated pandemic duration in days. The influence of this range of immunities over the model was tested with different parameterisations regarding the uncertainties involved in the model such as the durations of the cellular automaton states, the contamination contributions of each state and the state transition probabilities. A collective immunity threshold of $$55\% \pm 2.5\%$$ on average was obtained from this procedure, under four distinct parameterisations, which is in tune with the estimates of the currently available medical literature, even increasing the uncertainty of the input parameters. Stochastic cellular automaton COVID-19 SARS-CoV-2 Contagious disease dynamic collective immunity Balbi, Pedro Paulo aut Enthalten in Natural computing Springer Netherlands, 2002 21(2022), 3 vom: 18. Juni, Seite 449-461 (DE-627)36367487X (DE-600)2110258-2 (DE-576)9363674878 1567-7818 nnns volume:21 year:2022 number:3 day:18 month:06 pages:449-461 https://doi.org/10.1007/s11047-022-09893-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 54.28$jNichtelektronische Datenverarbeitung VZ 106418858 (DE-625)106418858 54.72$jKünstliche Intelligenz VZ 10641240X (DE-625)10641240X AR 21 2022 3 18 06 449-461 |
allfieldsSound |
10.1007/s11047-022-09893-3 doi (DE-627)OLC2079438727 (DE-He213)s11047-022-09893-3-p DE-627 ger DE-627 rakwb eng 570 004 VZ 12 ssgn 54.28$jNichtelektronische Datenverarbeitung bkl 54.72$jKünstliche Intelligenz bkl Lima, Isaías verfasserin (orcid)0000-0003-0407-4683 aut Estimates of the collective immunity to COVID-19 derived from a stochastic cellular automaton based framework 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2022 Abstract In the context of the propagation of infectious diseases, when a sufficient degree of immunisation is achieved within a population, the spread of the disease is ended or significantly decreased, leading to collective immunity, meaning the indirect protection given by immune individuals to susceptible individuals. Here we describe the estimates of the collective immunity to COVID-19 from a stochastic cellular automaton based model designed to emulate the spread of SARS-CoV-2 in a population of static individuals interacting only via a Moore neighbourhood of radius one, with a view to analyze the impact of initially immune individuals on the dynamics of COVID-19. This impact was measured by comparing a progression of initial immunity ratio—the percentage of immunised individuals before patient zero starts infecting its neighbourhood—from 0 to 95% of the initial population, with the number of susceptible individuals not contaminated, the peak value of active cases, the total number of deaths and the emulated pandemic duration in days. The influence of this range of immunities over the model was tested with different parameterisations regarding the uncertainties involved in the model such as the durations of the cellular automaton states, the contamination contributions of each state and the state transition probabilities. A collective immunity threshold of $$55\% \pm 2.5\%$$ on average was obtained from this procedure, under four distinct parameterisations, which is in tune with the estimates of the currently available medical literature, even increasing the uncertainty of the input parameters. Stochastic cellular automaton COVID-19 SARS-CoV-2 Contagious disease dynamic collective immunity Balbi, Pedro Paulo aut Enthalten in Natural computing Springer Netherlands, 2002 21(2022), 3 vom: 18. Juni, Seite 449-461 (DE-627)36367487X (DE-600)2110258-2 (DE-576)9363674878 1567-7818 nnns volume:21 year:2022 number:3 day:18 month:06 pages:449-461 https://doi.org/10.1007/s11047-022-09893-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 54.28$jNichtelektronische Datenverarbeitung VZ 106418858 (DE-625)106418858 54.72$jKünstliche Intelligenz VZ 10641240X (DE-625)10641240X AR 21 2022 3 18 06 449-461 |
language |
English |
source |
Enthalten in Natural computing 21(2022), 3 vom: 18. Juni, Seite 449-461 volume:21 year:2022 number:3 day:18 month:06 pages:449-461 |
sourceStr |
Enthalten in Natural computing 21(2022), 3 vom: 18. Juni, Seite 449-461 volume:21 year:2022 number:3 day:18 month:06 pages:449-461 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Stochastic cellular automaton COVID-19 SARS-CoV-2 Contagious disease dynamic collective immunity |
dewey-raw |
570 |
isfreeaccess_bool |
false |
container_title |
Natural computing |
authorswithroles_txt_mv |
Lima, Isaías @@aut@@ Balbi, Pedro Paulo @@aut@@ |
publishDateDaySort_date |
2022-06-18T00:00:00Z |
hierarchy_top_id |
36367487X |
dewey-sort |
3570 |
id |
OLC2079438727 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2079438727</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230517032001.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11047-022-09893-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2079438727</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11047-022-09893-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">12</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.28$jNichtelektronische Datenverarbeitung</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72$jKünstliche Intelligenz</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lima, Isaías</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0407-4683</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Estimates of the collective immunity to COVID-19 derived from a stochastic cellular automaton based framework</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature B.V. 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In the context of the propagation of infectious diseases, when a sufficient degree of immunisation is achieved within a population, the spread of the disease is ended or significantly decreased, leading to collective immunity, meaning the indirect protection given by immune individuals to susceptible individuals. Here we describe the estimates of the collective immunity to COVID-19 from a stochastic cellular automaton based model designed to emulate the spread of SARS-CoV-2 in a population of static individuals interacting only via a Moore neighbourhood of radius one, with a view to analyze the impact of initially immune individuals on the dynamics of COVID-19. This impact was measured by comparing a progression of initial immunity ratio—the percentage of immunised individuals before patient zero starts infecting its neighbourhood—from 0 to 95% of the initial population, with the number of susceptible individuals not contaminated, the peak value of active cases, the total number of deaths and the emulated pandemic duration in days. The influence of this range of immunities over the model was tested with different parameterisations regarding the uncertainties involved in the model such as the durations of the cellular automaton states, the contamination contributions of each state and the state transition probabilities. A collective immunity threshold of $$55\% \pm 2.5\%$$ on average was obtained from this procedure, under four distinct parameterisations, which is in tune with the estimates of the currently available medical literature, even increasing the uncertainty of the input parameters.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic cellular automaton</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COVID-19</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SARS-CoV-2</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Contagious disease dynamic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">collective immunity</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Balbi, Pedro Paulo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Natural computing</subfield><subfield code="d">Springer Netherlands, 2002</subfield><subfield code="g">21(2022), 3 vom: 18. Juni, Seite 449-461</subfield><subfield code="w">(DE-627)36367487X</subfield><subfield code="w">(DE-600)2110258-2</subfield><subfield code="w">(DE-576)9363674878</subfield><subfield code="x">1567-7818</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">day:18</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:449-461</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11047-022-09893-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.28$jNichtelektronische Datenverarbeitung</subfield><subfield code="q">VZ</subfield><subfield code="0">106418858</subfield><subfield code="0">(DE-625)106418858</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72$jKünstliche Intelligenz</subfield><subfield code="q">VZ</subfield><subfield code="0">10641240X</subfield><subfield code="0">(DE-625)10641240X</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="b">18</subfield><subfield code="c">06</subfield><subfield code="h">449-461</subfield></datafield></record></collection>
|
author |
Lima, Isaías |
spellingShingle |
Lima, Isaías ddc 570 ssgn 12 bkl 54.28$jNichtelektronische Datenverarbeitung bkl 54.72$jKünstliche Intelligenz misc Stochastic cellular automaton misc COVID-19 misc SARS-CoV-2 misc Contagious disease dynamic misc collective immunity Estimates of the collective immunity to COVID-19 derived from a stochastic cellular automaton based framework |
authorStr |
Lima, Isaías |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)36367487X |
format |
Article |
dewey-ones |
570 - Life sciences; biology 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1567-7818 |
topic_title |
570 004 VZ 12 ssgn 54.28$jNichtelektronische Datenverarbeitung bkl 54.72$jKünstliche Intelligenz bkl Estimates of the collective immunity to COVID-19 derived from a stochastic cellular automaton based framework Stochastic cellular automaton COVID-19 SARS-CoV-2 Contagious disease dynamic collective immunity |
topic |
ddc 570 ssgn 12 bkl 54.28$jNichtelektronische Datenverarbeitung bkl 54.72$jKünstliche Intelligenz misc Stochastic cellular automaton misc COVID-19 misc SARS-CoV-2 misc Contagious disease dynamic misc collective immunity |
topic_unstemmed |
ddc 570 ssgn 12 bkl 54.28$jNichtelektronische Datenverarbeitung bkl 54.72$jKünstliche Intelligenz misc Stochastic cellular automaton misc COVID-19 misc SARS-CoV-2 misc Contagious disease dynamic misc collective immunity |
topic_browse |
ddc 570 ssgn 12 bkl 54.28$jNichtelektronische Datenverarbeitung bkl 54.72$jKünstliche Intelligenz misc Stochastic cellular automaton misc COVID-19 misc SARS-CoV-2 misc Contagious disease dynamic misc collective immunity |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Natural computing |
hierarchy_parent_id |
36367487X |
dewey-tens |
570 - Life sciences; biology 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Natural computing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)36367487X (DE-600)2110258-2 (DE-576)9363674878 |
title |
Estimates of the collective immunity to COVID-19 derived from a stochastic cellular automaton based framework |
ctrlnum |
(DE-627)OLC2079438727 (DE-He213)s11047-022-09893-3-p |
title_full |
Estimates of the collective immunity to COVID-19 derived from a stochastic cellular automaton based framework |
author_sort |
Lima, Isaías |
journal |
Natural computing |
journalStr |
Natural computing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
449 |
author_browse |
Lima, Isaías Balbi, Pedro Paulo |
container_volume |
21 |
class |
570 004 VZ 12 ssgn 54.28$jNichtelektronische Datenverarbeitung bkl 54.72$jKünstliche Intelligenz bkl |
format_se |
Aufsätze |
author-letter |
Lima, Isaías |
doi_str_mv |
10.1007/s11047-022-09893-3 |
normlink |
(ORCID)0000-0003-0407-4683 106418858 10641240X |
normlink_prefix_str_mv |
(orcid)0000-0003-0407-4683 106418858 (DE-625)106418858 10641240X (DE-625)10641240X |
dewey-full |
570 004 |
title_sort |
estimates of the collective immunity to covid-19 derived from a stochastic cellular automaton based framework |
title_auth |
Estimates of the collective immunity to COVID-19 derived from a stochastic cellular automaton based framework |
abstract |
Abstract In the context of the propagation of infectious diseases, when a sufficient degree of immunisation is achieved within a population, the spread of the disease is ended or significantly decreased, leading to collective immunity, meaning the indirect protection given by immune individuals to susceptible individuals. Here we describe the estimates of the collective immunity to COVID-19 from a stochastic cellular automaton based model designed to emulate the spread of SARS-CoV-2 in a population of static individuals interacting only via a Moore neighbourhood of radius one, with a view to analyze the impact of initially immune individuals on the dynamics of COVID-19. This impact was measured by comparing a progression of initial immunity ratio—the percentage of immunised individuals before patient zero starts infecting its neighbourhood—from 0 to 95% of the initial population, with the number of susceptible individuals not contaminated, the peak value of active cases, the total number of deaths and the emulated pandemic duration in days. The influence of this range of immunities over the model was tested with different parameterisations regarding the uncertainties involved in the model such as the durations of the cellular automaton states, the contamination contributions of each state and the state transition probabilities. A collective immunity threshold of $$55\% \pm 2.5\%$$ on average was obtained from this procedure, under four distinct parameterisations, which is in tune with the estimates of the currently available medical literature, even increasing the uncertainty of the input parameters. © The Author(s), under exclusive licence to Springer Nature B.V. 2022 |
abstractGer |
Abstract In the context of the propagation of infectious diseases, when a sufficient degree of immunisation is achieved within a population, the spread of the disease is ended or significantly decreased, leading to collective immunity, meaning the indirect protection given by immune individuals to susceptible individuals. Here we describe the estimates of the collective immunity to COVID-19 from a stochastic cellular automaton based model designed to emulate the spread of SARS-CoV-2 in a population of static individuals interacting only via a Moore neighbourhood of radius one, with a view to analyze the impact of initially immune individuals on the dynamics of COVID-19. This impact was measured by comparing a progression of initial immunity ratio—the percentage of immunised individuals before patient zero starts infecting its neighbourhood—from 0 to 95% of the initial population, with the number of susceptible individuals not contaminated, the peak value of active cases, the total number of deaths and the emulated pandemic duration in days. The influence of this range of immunities over the model was tested with different parameterisations regarding the uncertainties involved in the model such as the durations of the cellular automaton states, the contamination contributions of each state and the state transition probabilities. A collective immunity threshold of $$55\% \pm 2.5\%$$ on average was obtained from this procedure, under four distinct parameterisations, which is in tune with the estimates of the currently available medical literature, even increasing the uncertainty of the input parameters. © The Author(s), under exclusive licence to Springer Nature B.V. 2022 |
abstract_unstemmed |
Abstract In the context of the propagation of infectious diseases, when a sufficient degree of immunisation is achieved within a population, the spread of the disease is ended or significantly decreased, leading to collective immunity, meaning the indirect protection given by immune individuals to susceptible individuals. Here we describe the estimates of the collective immunity to COVID-19 from a stochastic cellular automaton based model designed to emulate the spread of SARS-CoV-2 in a population of static individuals interacting only via a Moore neighbourhood of radius one, with a view to analyze the impact of initially immune individuals on the dynamics of COVID-19. This impact was measured by comparing a progression of initial immunity ratio—the percentage of immunised individuals before patient zero starts infecting its neighbourhood—from 0 to 95% of the initial population, with the number of susceptible individuals not contaminated, the peak value of active cases, the total number of deaths and the emulated pandemic duration in days. The influence of this range of immunities over the model was tested with different parameterisations regarding the uncertainties involved in the model such as the durations of the cellular automaton states, the contamination contributions of each state and the state transition probabilities. A collective immunity threshold of $$55\% \pm 2.5\%$$ on average was obtained from this procedure, under four distinct parameterisations, which is in tune with the estimates of the currently available medical literature, even increasing the uncertainty of the input parameters. © The Author(s), under exclusive licence to Springer Nature B.V. 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 |
container_issue |
3 |
title_short |
Estimates of the collective immunity to COVID-19 derived from a stochastic cellular automaton based framework |
url |
https://doi.org/10.1007/s11047-022-09893-3 |
remote_bool |
false |
author2 |
Balbi, Pedro Paulo |
author2Str |
Balbi, Pedro Paulo |
ppnlink |
36367487X |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11047-022-09893-3 |
up_date |
2024-07-04T00:56:12.866Z |
_version_ |
1803607943799635968 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2079438727</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230517032001.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11047-022-09893-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2079438727</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11047-022-09893-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">570</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">12</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.28$jNichtelektronische Datenverarbeitung</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">54.72$jKünstliche Intelligenz</subfield><subfield code="2">bkl</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Lima, Isaías</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-0407-4683</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Estimates of the collective immunity to COVID-19 derived from a stochastic cellular automaton based framework</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature B.V. 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In the context of the propagation of infectious diseases, when a sufficient degree of immunisation is achieved within a population, the spread of the disease is ended or significantly decreased, leading to collective immunity, meaning the indirect protection given by immune individuals to susceptible individuals. Here we describe the estimates of the collective immunity to COVID-19 from a stochastic cellular automaton based model designed to emulate the spread of SARS-CoV-2 in a population of static individuals interacting only via a Moore neighbourhood of radius one, with a view to analyze the impact of initially immune individuals on the dynamics of COVID-19. This impact was measured by comparing a progression of initial immunity ratio—the percentage of immunised individuals before patient zero starts infecting its neighbourhood—from 0 to 95% of the initial population, with the number of susceptible individuals not contaminated, the peak value of active cases, the total number of deaths and the emulated pandemic duration in days. The influence of this range of immunities over the model was tested with different parameterisations regarding the uncertainties involved in the model such as the durations of the cellular automaton states, the contamination contributions of each state and the state transition probabilities. A collective immunity threshold of $$55\% \pm 2.5\%$$ on average was obtained from this procedure, under four distinct parameterisations, which is in tune with the estimates of the currently available medical literature, even increasing the uncertainty of the input parameters.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Stochastic cellular automaton</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">COVID-19</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">SARS-CoV-2</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Contagious disease dynamic</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">collective immunity</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Balbi, Pedro Paulo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Natural computing</subfield><subfield code="d">Springer Netherlands, 2002</subfield><subfield code="g">21(2022), 3 vom: 18. Juni, Seite 449-461</subfield><subfield code="w">(DE-627)36367487X</subfield><subfield code="w">(DE-600)2110258-2</subfield><subfield code="w">(DE-576)9363674878</subfield><subfield code="x">1567-7818</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:21</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">day:18</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:449-461</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11047-022-09893-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.28$jNichtelektronische Datenverarbeitung</subfield><subfield code="q">VZ</subfield><subfield code="0">106418858</subfield><subfield code="0">(DE-625)106418858</subfield></datafield><datafield tag="936" ind1="b" ind2="k"><subfield code="a">54.72$jKünstliche Intelligenz</subfield><subfield code="q">VZ</subfield><subfield code="0">10641240X</subfield><subfield code="0">(DE-625)10641240X</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">21</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="b">18</subfield><subfield code="c">06</subfield><subfield code="h">449-461</subfield></datafield></record></collection>
|
score |
7.400943 |