On the convergence analysis of a penalty algorithm for nonsmooth optimization and its performance for solving hard-sphere problems
Abstract This work builds upon the theoretical and numerical results of the recently proposed Penalized Algorithm for Constrained Nonsmooth Optimization (PACNO). Our contribution is threefold. Instead of resting upon approximate stationary points of the subproblems, approximate local minimizers are...
Ausführliche Beschreibung
Autor*in: |
Prado, Renan W. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Numerical algorithms - Springer US, 1991, 91(2022), 2 vom: 30. März, Seite 933-957 |
---|---|
Übergeordnetes Werk: |
volume:91 ; year:2022 ; number:2 ; day:30 ; month:03 ; pages:933-957 |
Links: |
---|
DOI / URN: |
10.1007/s11075-022-01287-x |
---|
Katalog-ID: |
OLC2079498118 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2079498118 | ||
003 | DE-627 | ||
005 | 20230506063336.0 | ||
007 | tu | ||
008 | 221220s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11075-022-01287-x |2 doi | |
035 | |a (DE-627)OLC2079498118 | ||
035 | |a (DE-He213)s11075-022-01287-x-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Prado, Renan W. |e verfasserin |4 aut | |
245 | 1 | 0 | |a On the convergence analysis of a penalty algorithm for nonsmooth optimization and its performance for solving hard-sphere problems |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 | ||
520 | |a Abstract This work builds upon the theoretical and numerical results of the recently proposed Penalized Algorithm for Constrained Nonsmooth Optimization (PACNO). Our contribution is threefold. Instead of resting upon approximate stationary points of the subproblems, approximate local minimizers are assumed to be computed. Consequently, a stronger convergence result is obtained, based on a new sequential optimality condition. Moreover, using a blackbox minimization framework and hard-sphere instances, the intrinsic parameters of PACNO have been adjusted, improving outcomes from the literature for the kissing problem, which consists of determining the maximum number of non-overlapping and equal spheres that can touch simultaneously a given sphere of the same size. Finally, the so-called double-kissing problem has been modeled: two equal and touching spheres are provided, and one aims at finding the maximum number of non-overlapping spheres, having the same radius of the given pair, which can be arranged so that each of them touches at least one of the stated spheres. A nonsmooth formulation for the double-kissing problem is devised, and the solutions of bi-, three-, and four-dimensional instances are successfully achieved. | ||
650 | 4 | |a Nonsmooth optimization | |
650 | 4 | |a Nonconvex programming | |
650 | 4 | |a Optimality conditions | |
650 | 4 | |a Blackbox optimization | |
650 | 4 | |a Hard-sphere problems | |
700 | 1 | |a Santos, Sandra A. |0 (orcid)0000-0002-6250-0137 |4 aut | |
700 | 1 | |a Simões, Lucas E. A. |0 (orcid)0000-0002-2305-3565 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Numerical algorithms |d Springer US, 1991 |g 91(2022), 2 vom: 30. März, Seite 933-957 |w (DE-627)130981753 |w (DE-600)1075844-6 |w (DE-576)029154111 |x 1017-1398 |7 nnns |
773 | 1 | 8 | |g volume:91 |g year:2022 |g number:2 |g day:30 |g month:03 |g pages:933-957 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11075-022-01287-x |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
951 | |a AR | ||
952 | |d 91 |j 2022 |e 2 |b 30 |c 03 |h 933-957 |
author_variant |
r w p rw rwp s a s sa sas l e a s lea leas |
---|---|
matchkey_str |
article:10171398:2022----::nhcnegnenlssfpnlyloihfrosototmztoadtpromne |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s11075-022-01287-x doi (DE-627)OLC2079498118 (DE-He213)s11075-022-01287-x-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Prado, Renan W. verfasserin aut On the convergence analysis of a penalty algorithm for nonsmooth optimization and its performance for solving hard-sphere problems 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract This work builds upon the theoretical and numerical results of the recently proposed Penalized Algorithm for Constrained Nonsmooth Optimization (PACNO). Our contribution is threefold. Instead of resting upon approximate stationary points of the subproblems, approximate local minimizers are assumed to be computed. Consequently, a stronger convergence result is obtained, based on a new sequential optimality condition. Moreover, using a blackbox minimization framework and hard-sphere instances, the intrinsic parameters of PACNO have been adjusted, improving outcomes from the literature for the kissing problem, which consists of determining the maximum number of non-overlapping and equal spheres that can touch simultaneously a given sphere of the same size. Finally, the so-called double-kissing problem has been modeled: two equal and touching spheres are provided, and one aims at finding the maximum number of non-overlapping spheres, having the same radius of the given pair, which can be arranged so that each of them touches at least one of the stated spheres. A nonsmooth formulation for the double-kissing problem is devised, and the solutions of bi-, three-, and four-dimensional instances are successfully achieved. Nonsmooth optimization Nonconvex programming Optimality conditions Blackbox optimization Hard-sphere problems Santos, Sandra A. (orcid)0000-0002-6250-0137 aut Simões, Lucas E. A. (orcid)0000-0002-2305-3565 aut Enthalten in Numerical algorithms Springer US, 1991 91(2022), 2 vom: 30. März, Seite 933-957 (DE-627)130981753 (DE-600)1075844-6 (DE-576)029154111 1017-1398 nnns volume:91 year:2022 number:2 day:30 month:03 pages:933-957 https://doi.org/10.1007/s11075-022-01287-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 91 2022 2 30 03 933-957 |
spelling |
10.1007/s11075-022-01287-x doi (DE-627)OLC2079498118 (DE-He213)s11075-022-01287-x-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Prado, Renan W. verfasserin aut On the convergence analysis of a penalty algorithm for nonsmooth optimization and its performance for solving hard-sphere problems 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract This work builds upon the theoretical and numerical results of the recently proposed Penalized Algorithm for Constrained Nonsmooth Optimization (PACNO). Our contribution is threefold. Instead of resting upon approximate stationary points of the subproblems, approximate local minimizers are assumed to be computed. Consequently, a stronger convergence result is obtained, based on a new sequential optimality condition. Moreover, using a blackbox minimization framework and hard-sphere instances, the intrinsic parameters of PACNO have been adjusted, improving outcomes from the literature for the kissing problem, which consists of determining the maximum number of non-overlapping and equal spheres that can touch simultaneously a given sphere of the same size. Finally, the so-called double-kissing problem has been modeled: two equal and touching spheres are provided, and one aims at finding the maximum number of non-overlapping spheres, having the same radius of the given pair, which can be arranged so that each of them touches at least one of the stated spheres. A nonsmooth formulation for the double-kissing problem is devised, and the solutions of bi-, three-, and four-dimensional instances are successfully achieved. Nonsmooth optimization Nonconvex programming Optimality conditions Blackbox optimization Hard-sphere problems Santos, Sandra A. (orcid)0000-0002-6250-0137 aut Simões, Lucas E. A. (orcid)0000-0002-2305-3565 aut Enthalten in Numerical algorithms Springer US, 1991 91(2022), 2 vom: 30. März, Seite 933-957 (DE-627)130981753 (DE-600)1075844-6 (DE-576)029154111 1017-1398 nnns volume:91 year:2022 number:2 day:30 month:03 pages:933-957 https://doi.org/10.1007/s11075-022-01287-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 91 2022 2 30 03 933-957 |
allfields_unstemmed |
10.1007/s11075-022-01287-x doi (DE-627)OLC2079498118 (DE-He213)s11075-022-01287-x-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Prado, Renan W. verfasserin aut On the convergence analysis of a penalty algorithm for nonsmooth optimization and its performance for solving hard-sphere problems 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract This work builds upon the theoretical and numerical results of the recently proposed Penalized Algorithm for Constrained Nonsmooth Optimization (PACNO). Our contribution is threefold. Instead of resting upon approximate stationary points of the subproblems, approximate local minimizers are assumed to be computed. Consequently, a stronger convergence result is obtained, based on a new sequential optimality condition. Moreover, using a blackbox minimization framework and hard-sphere instances, the intrinsic parameters of PACNO have been adjusted, improving outcomes from the literature for the kissing problem, which consists of determining the maximum number of non-overlapping and equal spheres that can touch simultaneously a given sphere of the same size. Finally, the so-called double-kissing problem has been modeled: two equal and touching spheres are provided, and one aims at finding the maximum number of non-overlapping spheres, having the same radius of the given pair, which can be arranged so that each of them touches at least one of the stated spheres. A nonsmooth formulation for the double-kissing problem is devised, and the solutions of bi-, three-, and four-dimensional instances are successfully achieved. Nonsmooth optimization Nonconvex programming Optimality conditions Blackbox optimization Hard-sphere problems Santos, Sandra A. (orcid)0000-0002-6250-0137 aut Simões, Lucas E. A. (orcid)0000-0002-2305-3565 aut Enthalten in Numerical algorithms Springer US, 1991 91(2022), 2 vom: 30. März, Seite 933-957 (DE-627)130981753 (DE-600)1075844-6 (DE-576)029154111 1017-1398 nnns volume:91 year:2022 number:2 day:30 month:03 pages:933-957 https://doi.org/10.1007/s11075-022-01287-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 91 2022 2 30 03 933-957 |
allfieldsGer |
10.1007/s11075-022-01287-x doi (DE-627)OLC2079498118 (DE-He213)s11075-022-01287-x-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Prado, Renan W. verfasserin aut On the convergence analysis of a penalty algorithm for nonsmooth optimization and its performance for solving hard-sphere problems 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract This work builds upon the theoretical and numerical results of the recently proposed Penalized Algorithm for Constrained Nonsmooth Optimization (PACNO). Our contribution is threefold. Instead of resting upon approximate stationary points of the subproblems, approximate local minimizers are assumed to be computed. Consequently, a stronger convergence result is obtained, based on a new sequential optimality condition. Moreover, using a blackbox minimization framework and hard-sphere instances, the intrinsic parameters of PACNO have been adjusted, improving outcomes from the literature for the kissing problem, which consists of determining the maximum number of non-overlapping and equal spheres that can touch simultaneously a given sphere of the same size. Finally, the so-called double-kissing problem has been modeled: two equal and touching spheres are provided, and one aims at finding the maximum number of non-overlapping spheres, having the same radius of the given pair, which can be arranged so that each of them touches at least one of the stated spheres. A nonsmooth formulation for the double-kissing problem is devised, and the solutions of bi-, three-, and four-dimensional instances are successfully achieved. Nonsmooth optimization Nonconvex programming Optimality conditions Blackbox optimization Hard-sphere problems Santos, Sandra A. (orcid)0000-0002-6250-0137 aut Simões, Lucas E. A. (orcid)0000-0002-2305-3565 aut Enthalten in Numerical algorithms Springer US, 1991 91(2022), 2 vom: 30. März, Seite 933-957 (DE-627)130981753 (DE-600)1075844-6 (DE-576)029154111 1017-1398 nnns volume:91 year:2022 number:2 day:30 month:03 pages:933-957 https://doi.org/10.1007/s11075-022-01287-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 91 2022 2 30 03 933-957 |
allfieldsSound |
10.1007/s11075-022-01287-x doi (DE-627)OLC2079498118 (DE-He213)s11075-022-01287-x-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Prado, Renan W. verfasserin aut On the convergence analysis of a penalty algorithm for nonsmooth optimization and its performance for solving hard-sphere problems 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract This work builds upon the theoretical and numerical results of the recently proposed Penalized Algorithm for Constrained Nonsmooth Optimization (PACNO). Our contribution is threefold. Instead of resting upon approximate stationary points of the subproblems, approximate local minimizers are assumed to be computed. Consequently, a stronger convergence result is obtained, based on a new sequential optimality condition. Moreover, using a blackbox minimization framework and hard-sphere instances, the intrinsic parameters of PACNO have been adjusted, improving outcomes from the literature for the kissing problem, which consists of determining the maximum number of non-overlapping and equal spheres that can touch simultaneously a given sphere of the same size. Finally, the so-called double-kissing problem has been modeled: two equal and touching spheres are provided, and one aims at finding the maximum number of non-overlapping spheres, having the same radius of the given pair, which can be arranged so that each of them touches at least one of the stated spheres. A nonsmooth formulation for the double-kissing problem is devised, and the solutions of bi-, three-, and four-dimensional instances are successfully achieved. Nonsmooth optimization Nonconvex programming Optimality conditions Blackbox optimization Hard-sphere problems Santos, Sandra A. (orcid)0000-0002-6250-0137 aut Simões, Lucas E. A. (orcid)0000-0002-2305-3565 aut Enthalten in Numerical algorithms Springer US, 1991 91(2022), 2 vom: 30. März, Seite 933-957 (DE-627)130981753 (DE-600)1075844-6 (DE-576)029154111 1017-1398 nnns volume:91 year:2022 number:2 day:30 month:03 pages:933-957 https://doi.org/10.1007/s11075-022-01287-x lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 91 2022 2 30 03 933-957 |
language |
English |
source |
Enthalten in Numerical algorithms 91(2022), 2 vom: 30. März, Seite 933-957 volume:91 year:2022 number:2 day:30 month:03 pages:933-957 |
sourceStr |
Enthalten in Numerical algorithms 91(2022), 2 vom: 30. März, Seite 933-957 volume:91 year:2022 number:2 day:30 month:03 pages:933-957 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Nonsmooth optimization Nonconvex programming Optimality conditions Blackbox optimization Hard-sphere problems |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Numerical algorithms |
authorswithroles_txt_mv |
Prado, Renan W. @@aut@@ Santos, Sandra A. @@aut@@ Simões, Lucas E. A. @@aut@@ |
publishDateDaySort_date |
2022-03-30T00:00:00Z |
hierarchy_top_id |
130981753 |
dewey-sort |
3510 |
id |
OLC2079498118 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2079498118</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506063336.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11075-022-01287-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2079498118</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11075-022-01287-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Prado, Renan W.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the convergence analysis of a penalty algorithm for nonsmooth optimization and its performance for solving hard-sphere problems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This work builds upon the theoretical and numerical results of the recently proposed Penalized Algorithm for Constrained Nonsmooth Optimization (PACNO). Our contribution is threefold. Instead of resting upon approximate stationary points of the subproblems, approximate local minimizers are assumed to be computed. Consequently, a stronger convergence result is obtained, based on a new sequential optimality condition. Moreover, using a blackbox minimization framework and hard-sphere instances, the intrinsic parameters of PACNO have been adjusted, improving outcomes from the literature for the kissing problem, which consists of determining the maximum number of non-overlapping and equal spheres that can touch simultaneously a given sphere of the same size. Finally, the so-called double-kissing problem has been modeled: two equal and touching spheres are provided, and one aims at finding the maximum number of non-overlapping spheres, having the same radius of the given pair, which can be arranged so that each of them touches at least one of the stated spheres. A nonsmooth formulation for the double-kissing problem is devised, and the solutions of bi-, three-, and four-dimensional instances are successfully achieved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonsmooth optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonconvex programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimality conditions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blackbox optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hard-sphere problems</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Santos, Sandra A.</subfield><subfield code="0">(orcid)0000-0002-6250-0137</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Simões, Lucas E. A.</subfield><subfield code="0">(orcid)0000-0002-2305-3565</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Numerical algorithms</subfield><subfield code="d">Springer US, 1991</subfield><subfield code="g">91(2022), 2 vom: 30. März, Seite 933-957</subfield><subfield code="w">(DE-627)130981753</subfield><subfield code="w">(DE-600)1075844-6</subfield><subfield code="w">(DE-576)029154111</subfield><subfield code="x">1017-1398</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:91</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">day:30</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:933-957</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11075-022-01287-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">91</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="b">30</subfield><subfield code="c">03</subfield><subfield code="h">933-957</subfield></datafield></record></collection>
|
author |
Prado, Renan W. |
spellingShingle |
Prado, Renan W. ddc 510 ssgn 17,1 misc Nonsmooth optimization misc Nonconvex programming misc Optimality conditions misc Blackbox optimization misc Hard-sphere problems On the convergence analysis of a penalty algorithm for nonsmooth optimization and its performance for solving hard-sphere problems |
authorStr |
Prado, Renan W. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130981753 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1017-1398 |
topic_title |
510 VZ 17,1 ssgn On the convergence analysis of a penalty algorithm for nonsmooth optimization and its performance for solving hard-sphere problems Nonsmooth optimization Nonconvex programming Optimality conditions Blackbox optimization Hard-sphere problems |
topic |
ddc 510 ssgn 17,1 misc Nonsmooth optimization misc Nonconvex programming misc Optimality conditions misc Blackbox optimization misc Hard-sphere problems |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Nonsmooth optimization misc Nonconvex programming misc Optimality conditions misc Blackbox optimization misc Hard-sphere problems |
topic_browse |
ddc 510 ssgn 17,1 misc Nonsmooth optimization misc Nonconvex programming misc Optimality conditions misc Blackbox optimization misc Hard-sphere problems |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Numerical algorithms |
hierarchy_parent_id |
130981753 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Numerical algorithms |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130981753 (DE-600)1075844-6 (DE-576)029154111 |
title |
On the convergence analysis of a penalty algorithm for nonsmooth optimization and its performance for solving hard-sphere problems |
ctrlnum |
(DE-627)OLC2079498118 (DE-He213)s11075-022-01287-x-p |
title_full |
On the convergence analysis of a penalty algorithm for nonsmooth optimization and its performance for solving hard-sphere problems |
author_sort |
Prado, Renan W. |
journal |
Numerical algorithms |
journalStr |
Numerical algorithms |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
933 |
author_browse |
Prado, Renan W. Santos, Sandra A. Simões, Lucas E. A. |
container_volume |
91 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Prado, Renan W. |
doi_str_mv |
10.1007/s11075-022-01287-x |
normlink |
(ORCID)0000-0002-6250-0137 (ORCID)0000-0002-2305-3565 |
normlink_prefix_str_mv |
(orcid)0000-0002-6250-0137 (orcid)0000-0002-2305-3565 |
dewey-full |
510 |
title_sort |
on the convergence analysis of a penalty algorithm for nonsmooth optimization and its performance for solving hard-sphere problems |
title_auth |
On the convergence analysis of a penalty algorithm for nonsmooth optimization and its performance for solving hard-sphere problems |
abstract |
Abstract This work builds upon the theoretical and numerical results of the recently proposed Penalized Algorithm for Constrained Nonsmooth Optimization (PACNO). Our contribution is threefold. Instead of resting upon approximate stationary points of the subproblems, approximate local minimizers are assumed to be computed. Consequently, a stronger convergence result is obtained, based on a new sequential optimality condition. Moreover, using a blackbox minimization framework and hard-sphere instances, the intrinsic parameters of PACNO have been adjusted, improving outcomes from the literature for the kissing problem, which consists of determining the maximum number of non-overlapping and equal spheres that can touch simultaneously a given sphere of the same size. Finally, the so-called double-kissing problem has been modeled: two equal and touching spheres are provided, and one aims at finding the maximum number of non-overlapping spheres, having the same radius of the given pair, which can be arranged so that each of them touches at least one of the stated spheres. A nonsmooth formulation for the double-kissing problem is devised, and the solutions of bi-, three-, and four-dimensional instances are successfully achieved. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
abstractGer |
Abstract This work builds upon the theoretical and numerical results of the recently proposed Penalized Algorithm for Constrained Nonsmooth Optimization (PACNO). Our contribution is threefold. Instead of resting upon approximate stationary points of the subproblems, approximate local minimizers are assumed to be computed. Consequently, a stronger convergence result is obtained, based on a new sequential optimality condition. Moreover, using a blackbox minimization framework and hard-sphere instances, the intrinsic parameters of PACNO have been adjusted, improving outcomes from the literature for the kissing problem, which consists of determining the maximum number of non-overlapping and equal spheres that can touch simultaneously a given sphere of the same size. Finally, the so-called double-kissing problem has been modeled: two equal and touching spheres are provided, and one aims at finding the maximum number of non-overlapping spheres, having the same radius of the given pair, which can be arranged so that each of them touches at least one of the stated spheres. A nonsmooth formulation for the double-kissing problem is devised, and the solutions of bi-, three-, and four-dimensional instances are successfully achieved. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
abstract_unstemmed |
Abstract This work builds upon the theoretical and numerical results of the recently proposed Penalized Algorithm for Constrained Nonsmooth Optimization (PACNO). Our contribution is threefold. Instead of resting upon approximate stationary points of the subproblems, approximate local minimizers are assumed to be computed. Consequently, a stronger convergence result is obtained, based on a new sequential optimality condition. Moreover, using a blackbox minimization framework and hard-sphere instances, the intrinsic parameters of PACNO have been adjusted, improving outcomes from the literature for the kissing problem, which consists of determining the maximum number of non-overlapping and equal spheres that can touch simultaneously a given sphere of the same size. Finally, the so-called double-kissing problem has been modeled: two equal and touching spheres are provided, and one aims at finding the maximum number of non-overlapping spheres, having the same radius of the given pair, which can be arranged so that each of them touches at least one of the stated spheres. A nonsmooth formulation for the double-kissing problem is devised, and the solutions of bi-, three-, and four-dimensional instances are successfully achieved. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT |
container_issue |
2 |
title_short |
On the convergence analysis of a penalty algorithm for nonsmooth optimization and its performance for solving hard-sphere problems |
url |
https://doi.org/10.1007/s11075-022-01287-x |
remote_bool |
false |
author2 |
Santos, Sandra A. Simões, Lucas E. A. |
author2Str |
Santos, Sandra A. Simões, Lucas E. A. |
ppnlink |
130981753 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11075-022-01287-x |
up_date |
2024-07-04T01:08:48.393Z |
_version_ |
1803608736027115520 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2079498118</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506063336.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11075-022-01287-x</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2079498118</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11075-022-01287-x-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Prado, Renan W.</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the convergence analysis of a penalty algorithm for nonsmooth optimization and its performance for solving hard-sphere problems</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This work builds upon the theoretical and numerical results of the recently proposed Penalized Algorithm for Constrained Nonsmooth Optimization (PACNO). Our contribution is threefold. Instead of resting upon approximate stationary points of the subproblems, approximate local minimizers are assumed to be computed. Consequently, a stronger convergence result is obtained, based on a new sequential optimality condition. Moreover, using a blackbox minimization framework and hard-sphere instances, the intrinsic parameters of PACNO have been adjusted, improving outcomes from the literature for the kissing problem, which consists of determining the maximum number of non-overlapping and equal spheres that can touch simultaneously a given sphere of the same size. Finally, the so-called double-kissing problem has been modeled: two equal and touching spheres are provided, and one aims at finding the maximum number of non-overlapping spheres, having the same radius of the given pair, which can be arranged so that each of them touches at least one of the stated spheres. A nonsmooth formulation for the double-kissing problem is devised, and the solutions of bi-, three-, and four-dimensional instances are successfully achieved.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonsmooth optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonconvex programming</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Optimality conditions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Blackbox optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hard-sphere problems</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Santos, Sandra A.</subfield><subfield code="0">(orcid)0000-0002-6250-0137</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Simões, Lucas E. A.</subfield><subfield code="0">(orcid)0000-0002-2305-3565</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Numerical algorithms</subfield><subfield code="d">Springer US, 1991</subfield><subfield code="g">91(2022), 2 vom: 30. März, Seite 933-957</subfield><subfield code="w">(DE-627)130981753</subfield><subfield code="w">(DE-600)1075844-6</subfield><subfield code="w">(DE-576)029154111</subfield><subfield code="x">1017-1398</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:91</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">day:30</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:933-957</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11075-022-01287-x</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">91</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="b">30</subfield><subfield code="c">03</subfield><subfield code="h">933-957</subfield></datafield></record></collection>
|
score |
7.402916 |