Bipolar fuzzy concepts reduction using granular-based weighted entropy
Abstract The bipolar fuzzy concept lattice has given a way to analyze the uncertainty in soft data set beyond the unipolar space. In this process, a problem is addressed while dealing with large number of bipolar fuzzy concepts and its importance for adequate decision-making process. It may create r...
Ausführliche Beschreibung
Autor*in: |
Singh, Prem Kumar [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Soft computing - Springer Berlin Heidelberg, 1997, 26(2022), 19 vom: 15. Juli, Seite 9859-9871 |
---|---|
Übergeordnetes Werk: |
volume:26 ; year:2022 ; number:19 ; day:15 ; month:07 ; pages:9859-9871 |
Links: |
---|
DOI / URN: |
10.1007/s00500-022-07336-w |
---|
Katalog-ID: |
OLC2079513702 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2079513702 | ||
003 | DE-627 | ||
005 | 20230506063850.0 | ||
007 | tu | ||
008 | 221220s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00500-022-07336-w |2 doi | |
035 | |a (DE-627)OLC2079513702 | ||
035 | |a (DE-He213)s00500-022-07336-w-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 11 |2 ssgn | ||
100 | 1 | |a Singh, Prem Kumar |e verfasserin |0 (orcid)0000-0003-1465-6572 |4 aut | |
245 | 1 | 0 | |a Bipolar fuzzy concepts reduction using granular-based weighted entropy |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 | ||
520 | |a Abstract The bipolar fuzzy concept lattice has given a way to analyze the uncertainty in soft data set beyond the unipolar space. In this process, a problem is addressed while dealing with large number of bipolar fuzzy concepts and its importance for adequate decision-making process. It may create randomness in the decision due to bipolarity and its existence in customer feedback, or expert opinion. To overcome from this issue, the current paper tried to measure the randomness in bipolar fuzzy concepts using the properties of Shannon entropy. The importance of bipolar fuzzy concept is decided based on defined window of granulation ($$\alpha _1, \alpha _2$$) for its computed weight with an illustrative example. The obtained results are also compared with recently available approaches on data with bipolar fuzzy attributes for validation. | ||
650 | 4 | |a Bipolar fuzzy set | |
650 | 4 | |a Bipolar fuzzy concept | |
650 | 4 | |a Formal fuzzy concept | |
650 | 4 | |a Fuzzy concept lattice | |
650 | 4 | |a Granular computing | |
650 | 4 | |a Soft data | |
650 | 4 | |a Uncertainty measurement | |
773 | 0 | 8 | |i Enthalten in |t Soft computing |d Springer Berlin Heidelberg, 1997 |g 26(2022), 19 vom: 15. Juli, Seite 9859-9871 |w (DE-627)231970536 |w (DE-600)1387526-7 |w (DE-576)060238259 |x 1432-7643 |7 nnns |
773 | 1 | 8 | |g volume:26 |g year:2022 |g number:19 |g day:15 |g month:07 |g pages:9859-9871 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00500-022-07336-w |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
912 | |a GBV_ILN_4277 | ||
951 | |a AR | ||
952 | |d 26 |j 2022 |e 19 |b 15 |c 07 |h 9859-9871 |
author_variant |
p k s pk pks |
---|---|
matchkey_str |
article:14327643:2022----::ioafzyocpseutouigrnlra |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s00500-022-07336-w doi (DE-627)OLC2079513702 (DE-He213)s00500-022-07336-w-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Singh, Prem Kumar verfasserin (orcid)0000-0003-1465-6572 aut Bipolar fuzzy concepts reduction using granular-based weighted entropy 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract The bipolar fuzzy concept lattice has given a way to analyze the uncertainty in soft data set beyond the unipolar space. In this process, a problem is addressed while dealing with large number of bipolar fuzzy concepts and its importance for adequate decision-making process. It may create randomness in the decision due to bipolarity and its existence in customer feedback, or expert opinion. To overcome from this issue, the current paper tried to measure the randomness in bipolar fuzzy concepts using the properties of Shannon entropy. The importance of bipolar fuzzy concept is decided based on defined window of granulation ($$\alpha _1, \alpha _2$$) for its computed weight with an illustrative example. The obtained results are also compared with recently available approaches on data with bipolar fuzzy attributes for validation. Bipolar fuzzy set Bipolar fuzzy concept Formal fuzzy concept Fuzzy concept lattice Granular computing Soft data Uncertainty measurement Enthalten in Soft computing Springer Berlin Heidelberg, 1997 26(2022), 19 vom: 15. Juli, Seite 9859-9871 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:26 year:2022 number:19 day:15 month:07 pages:9859-9871 https://doi.org/10.1007/s00500-022-07336-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 26 2022 19 15 07 9859-9871 |
spelling |
10.1007/s00500-022-07336-w doi (DE-627)OLC2079513702 (DE-He213)s00500-022-07336-w-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Singh, Prem Kumar verfasserin (orcid)0000-0003-1465-6572 aut Bipolar fuzzy concepts reduction using granular-based weighted entropy 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract The bipolar fuzzy concept lattice has given a way to analyze the uncertainty in soft data set beyond the unipolar space. In this process, a problem is addressed while dealing with large number of bipolar fuzzy concepts and its importance for adequate decision-making process. It may create randomness in the decision due to bipolarity and its existence in customer feedback, or expert opinion. To overcome from this issue, the current paper tried to measure the randomness in bipolar fuzzy concepts using the properties of Shannon entropy. The importance of bipolar fuzzy concept is decided based on defined window of granulation ($$\alpha _1, \alpha _2$$) for its computed weight with an illustrative example. The obtained results are also compared with recently available approaches on data with bipolar fuzzy attributes for validation. Bipolar fuzzy set Bipolar fuzzy concept Formal fuzzy concept Fuzzy concept lattice Granular computing Soft data Uncertainty measurement Enthalten in Soft computing Springer Berlin Heidelberg, 1997 26(2022), 19 vom: 15. Juli, Seite 9859-9871 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:26 year:2022 number:19 day:15 month:07 pages:9859-9871 https://doi.org/10.1007/s00500-022-07336-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 26 2022 19 15 07 9859-9871 |
allfields_unstemmed |
10.1007/s00500-022-07336-w doi (DE-627)OLC2079513702 (DE-He213)s00500-022-07336-w-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Singh, Prem Kumar verfasserin (orcid)0000-0003-1465-6572 aut Bipolar fuzzy concepts reduction using granular-based weighted entropy 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract The bipolar fuzzy concept lattice has given a way to analyze the uncertainty in soft data set beyond the unipolar space. In this process, a problem is addressed while dealing with large number of bipolar fuzzy concepts and its importance for adequate decision-making process. It may create randomness in the decision due to bipolarity and its existence in customer feedback, or expert opinion. To overcome from this issue, the current paper tried to measure the randomness in bipolar fuzzy concepts using the properties of Shannon entropy. The importance of bipolar fuzzy concept is decided based on defined window of granulation ($$\alpha _1, \alpha _2$$) for its computed weight with an illustrative example. The obtained results are also compared with recently available approaches on data with bipolar fuzzy attributes for validation. Bipolar fuzzy set Bipolar fuzzy concept Formal fuzzy concept Fuzzy concept lattice Granular computing Soft data Uncertainty measurement Enthalten in Soft computing Springer Berlin Heidelberg, 1997 26(2022), 19 vom: 15. Juli, Seite 9859-9871 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:26 year:2022 number:19 day:15 month:07 pages:9859-9871 https://doi.org/10.1007/s00500-022-07336-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 26 2022 19 15 07 9859-9871 |
allfieldsGer |
10.1007/s00500-022-07336-w doi (DE-627)OLC2079513702 (DE-He213)s00500-022-07336-w-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Singh, Prem Kumar verfasserin (orcid)0000-0003-1465-6572 aut Bipolar fuzzy concepts reduction using granular-based weighted entropy 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract The bipolar fuzzy concept lattice has given a way to analyze the uncertainty in soft data set beyond the unipolar space. In this process, a problem is addressed while dealing with large number of bipolar fuzzy concepts and its importance for adequate decision-making process. It may create randomness in the decision due to bipolarity and its existence in customer feedback, or expert opinion. To overcome from this issue, the current paper tried to measure the randomness in bipolar fuzzy concepts using the properties of Shannon entropy. The importance of bipolar fuzzy concept is decided based on defined window of granulation ($$\alpha _1, \alpha _2$$) for its computed weight with an illustrative example. The obtained results are also compared with recently available approaches on data with bipolar fuzzy attributes for validation. Bipolar fuzzy set Bipolar fuzzy concept Formal fuzzy concept Fuzzy concept lattice Granular computing Soft data Uncertainty measurement Enthalten in Soft computing Springer Berlin Heidelberg, 1997 26(2022), 19 vom: 15. Juli, Seite 9859-9871 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:26 year:2022 number:19 day:15 month:07 pages:9859-9871 https://doi.org/10.1007/s00500-022-07336-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 26 2022 19 15 07 9859-9871 |
allfieldsSound |
10.1007/s00500-022-07336-w doi (DE-627)OLC2079513702 (DE-He213)s00500-022-07336-w-p DE-627 ger DE-627 rakwb eng 004 VZ 004 VZ 11 ssgn Singh, Prem Kumar verfasserin (orcid)0000-0003-1465-6572 aut Bipolar fuzzy concepts reduction using granular-based weighted entropy 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 Abstract The bipolar fuzzy concept lattice has given a way to analyze the uncertainty in soft data set beyond the unipolar space. In this process, a problem is addressed while dealing with large number of bipolar fuzzy concepts and its importance for adequate decision-making process. It may create randomness in the decision due to bipolarity and its existence in customer feedback, or expert opinion. To overcome from this issue, the current paper tried to measure the randomness in bipolar fuzzy concepts using the properties of Shannon entropy. The importance of bipolar fuzzy concept is decided based on defined window of granulation ($$\alpha _1, \alpha _2$$) for its computed weight with an illustrative example. The obtained results are also compared with recently available approaches on data with bipolar fuzzy attributes for validation. Bipolar fuzzy set Bipolar fuzzy concept Formal fuzzy concept Fuzzy concept lattice Granular computing Soft data Uncertainty measurement Enthalten in Soft computing Springer Berlin Heidelberg, 1997 26(2022), 19 vom: 15. Juli, Seite 9859-9871 (DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 1432-7643 nnns volume:26 year:2022 number:19 day:15 month:07 pages:9859-9871 https://doi.org/10.1007/s00500-022-07336-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 AR 26 2022 19 15 07 9859-9871 |
language |
English |
source |
Enthalten in Soft computing 26(2022), 19 vom: 15. Juli, Seite 9859-9871 volume:26 year:2022 number:19 day:15 month:07 pages:9859-9871 |
sourceStr |
Enthalten in Soft computing 26(2022), 19 vom: 15. Juli, Seite 9859-9871 volume:26 year:2022 number:19 day:15 month:07 pages:9859-9871 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Bipolar fuzzy set Bipolar fuzzy concept Formal fuzzy concept Fuzzy concept lattice Granular computing Soft data Uncertainty measurement |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Soft computing |
authorswithroles_txt_mv |
Singh, Prem Kumar @@aut@@ |
publishDateDaySort_date |
2022-07-15T00:00:00Z |
hierarchy_top_id |
231970536 |
dewey-sort |
14 |
id |
OLC2079513702 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2079513702</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506063850.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-022-07336-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2079513702</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00500-022-07336-w-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Singh, Prem Kumar</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1465-6572</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bipolar fuzzy concepts reduction using granular-based weighted entropy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The bipolar fuzzy concept lattice has given a way to analyze the uncertainty in soft data set beyond the unipolar space. In this process, a problem is addressed while dealing with large number of bipolar fuzzy concepts and its importance for adequate decision-making process. It may create randomness in the decision due to bipolarity and its existence in customer feedback, or expert opinion. To overcome from this issue, the current paper tried to measure the randomness in bipolar fuzzy concepts using the properties of Shannon entropy. The importance of bipolar fuzzy concept is decided based on defined window of granulation ($$\alpha _1, \alpha _2$$) for its computed weight with an illustrative example. The obtained results are also compared with recently available approaches on data with bipolar fuzzy attributes for validation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bipolar fuzzy set</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bipolar fuzzy concept</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Formal fuzzy concept</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy concept lattice</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Granular computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soft data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uncertainty measurement</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft computing</subfield><subfield code="d">Springer Berlin Heidelberg, 1997</subfield><subfield code="g">26(2022), 19 vom: 15. Juli, Seite 9859-9871</subfield><subfield code="w">(DE-627)231970536</subfield><subfield code="w">(DE-600)1387526-7</subfield><subfield code="w">(DE-576)060238259</subfield><subfield code="x">1432-7643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:19</subfield><subfield code="g">day:15</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:9859-9871</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00500-022-07336-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2022</subfield><subfield code="e">19</subfield><subfield code="b">15</subfield><subfield code="c">07</subfield><subfield code="h">9859-9871</subfield></datafield></record></collection>
|
author |
Singh, Prem Kumar |
spellingShingle |
Singh, Prem Kumar ddc 004 ssgn 11 misc Bipolar fuzzy set misc Bipolar fuzzy concept misc Formal fuzzy concept misc Fuzzy concept lattice misc Granular computing misc Soft data misc Uncertainty measurement Bipolar fuzzy concepts reduction using granular-based weighted entropy |
authorStr |
Singh, Prem Kumar |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)231970536 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1432-7643 |
topic_title |
004 VZ 11 ssgn Bipolar fuzzy concepts reduction using granular-based weighted entropy Bipolar fuzzy set Bipolar fuzzy concept Formal fuzzy concept Fuzzy concept lattice Granular computing Soft data Uncertainty measurement |
topic |
ddc 004 ssgn 11 misc Bipolar fuzzy set misc Bipolar fuzzy concept misc Formal fuzzy concept misc Fuzzy concept lattice misc Granular computing misc Soft data misc Uncertainty measurement |
topic_unstemmed |
ddc 004 ssgn 11 misc Bipolar fuzzy set misc Bipolar fuzzy concept misc Formal fuzzy concept misc Fuzzy concept lattice misc Granular computing misc Soft data misc Uncertainty measurement |
topic_browse |
ddc 004 ssgn 11 misc Bipolar fuzzy set misc Bipolar fuzzy concept misc Formal fuzzy concept misc Fuzzy concept lattice misc Granular computing misc Soft data misc Uncertainty measurement |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Soft computing |
hierarchy_parent_id |
231970536 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Soft computing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)231970536 (DE-600)1387526-7 (DE-576)060238259 |
title |
Bipolar fuzzy concepts reduction using granular-based weighted entropy |
ctrlnum |
(DE-627)OLC2079513702 (DE-He213)s00500-022-07336-w-p |
title_full |
Bipolar fuzzy concepts reduction using granular-based weighted entropy |
author_sort |
Singh, Prem Kumar |
journal |
Soft computing |
journalStr |
Soft computing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
9859 |
author_browse |
Singh, Prem Kumar |
container_volume |
26 |
class |
004 VZ 11 ssgn |
format_se |
Aufsätze |
author-letter |
Singh, Prem Kumar |
doi_str_mv |
10.1007/s00500-022-07336-w |
normlink |
(ORCID)0000-0003-1465-6572 |
normlink_prefix_str_mv |
(orcid)0000-0003-1465-6572 |
dewey-full |
004 |
title_sort |
bipolar fuzzy concepts reduction using granular-based weighted entropy |
title_auth |
Bipolar fuzzy concepts reduction using granular-based weighted entropy |
abstract |
Abstract The bipolar fuzzy concept lattice has given a way to analyze the uncertainty in soft data set beyond the unipolar space. In this process, a problem is addressed while dealing with large number of bipolar fuzzy concepts and its importance for adequate decision-making process. It may create randomness in the decision due to bipolarity and its existence in customer feedback, or expert opinion. To overcome from this issue, the current paper tried to measure the randomness in bipolar fuzzy concepts using the properties of Shannon entropy. The importance of bipolar fuzzy concept is decided based on defined window of granulation ($$\alpha _1, \alpha _2$$) for its computed weight with an illustrative example. The obtained results are also compared with recently available approaches on data with bipolar fuzzy attributes for validation. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
abstractGer |
Abstract The bipolar fuzzy concept lattice has given a way to analyze the uncertainty in soft data set beyond the unipolar space. In this process, a problem is addressed while dealing with large number of bipolar fuzzy concepts and its importance for adequate decision-making process. It may create randomness in the decision due to bipolarity and its existence in customer feedback, or expert opinion. To overcome from this issue, the current paper tried to measure the randomness in bipolar fuzzy concepts using the properties of Shannon entropy. The importance of bipolar fuzzy concept is decided based on defined window of granulation ($$\alpha _1, \alpha _2$$) for its computed weight with an illustrative example. The obtained results are also compared with recently available approaches on data with bipolar fuzzy attributes for validation. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
abstract_unstemmed |
Abstract The bipolar fuzzy concept lattice has given a way to analyze the uncertainty in soft data set beyond the unipolar space. In this process, a problem is addressed while dealing with large number of bipolar fuzzy concepts and its importance for adequate decision-making process. It may create randomness in the decision due to bipolarity and its existence in customer feedback, or expert opinion. To overcome from this issue, the current paper tried to measure the randomness in bipolar fuzzy concepts using the properties of Shannon entropy. The importance of bipolar fuzzy concept is decided based on defined window of granulation ($$\alpha _1, \alpha _2$$) for its computed weight with an illustrative example. The obtained results are also compared with recently available approaches on data with bipolar fuzzy attributes for validation. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT GBV_ILN_267 GBV_ILN_2018 GBV_ILN_4277 |
container_issue |
19 |
title_short |
Bipolar fuzzy concepts reduction using granular-based weighted entropy |
url |
https://doi.org/10.1007/s00500-022-07336-w |
remote_bool |
false |
ppnlink |
231970536 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00500-022-07336-w |
up_date |
2024-07-04T01:12:14.851Z |
_version_ |
1803608952511922176 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2079513702</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506063850.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00500-022-07336-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2079513702</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00500-022-07336-w-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Singh, Prem Kumar</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1465-6572</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Bipolar fuzzy concepts reduction using granular-based weighted entropy</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The bipolar fuzzy concept lattice has given a way to analyze the uncertainty in soft data set beyond the unipolar space. In this process, a problem is addressed while dealing with large number of bipolar fuzzy concepts and its importance for adequate decision-making process. It may create randomness in the decision due to bipolarity and its existence in customer feedback, or expert opinion. To overcome from this issue, the current paper tried to measure the randomness in bipolar fuzzy concepts using the properties of Shannon entropy. The importance of bipolar fuzzy concept is decided based on defined window of granulation ($$\alpha _1, \alpha _2$$) for its computed weight with an illustrative example. The obtained results are also compared with recently available approaches on data with bipolar fuzzy attributes for validation.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bipolar fuzzy set</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Bipolar fuzzy concept</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Formal fuzzy concept</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fuzzy concept lattice</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Granular computing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Soft data</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Uncertainty measurement</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Soft computing</subfield><subfield code="d">Springer Berlin Heidelberg, 1997</subfield><subfield code="g">26(2022), 19 vom: 15. Juli, Seite 9859-9871</subfield><subfield code="w">(DE-627)231970536</subfield><subfield code="w">(DE-600)1387526-7</subfield><subfield code="w">(DE-576)060238259</subfield><subfield code="x">1432-7643</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:26</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:19</subfield><subfield code="g">day:15</subfield><subfield code="g">month:07</subfield><subfield code="g">pages:9859-9871</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00500-022-07336-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4277</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">26</subfield><subfield code="j">2022</subfield><subfield code="e">19</subfield><subfield code="b">15</subfield><subfield code="c">07</subfield><subfield code="h">9859-9871</subfield></datafield></record></collection>
|
score |
7.399579 |