On the Critical Norm Concentration for the Inhomogeneous Nonlinear Schrödinger Equation
Abstract We consider the inhomogeneous nonlinear Schrödinger equation (INLS) in $${\mathbb {R}}^N$$i∂tu+Δu+|x|-b|u|2σu=0,$$\begin{aligned} i \partial _t u + \Delta u + |x|^{-b} |u|^{2\sigma }u = 0, \end{aligned}$$and show the $$L^2$$-norm concentration for the finite time blow-up solutions in the $$...
Ausführliche Beschreibung
Autor*in: |
Campos, Luccas [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of dynamics and differential equations - Springer US, 1989, 34(2022), 3 vom: 24. März, Seite 2347-2369 |
---|---|
Übergeordnetes Werk: |
volume:34 ; year:2022 ; number:3 ; day:24 ; month:03 ; pages:2347-2369 |
Links: |
---|
DOI / URN: |
10.1007/s10884-022-10151-4 |
---|
Katalog-ID: |
OLC2079523945 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2079523945 | ||
003 | DE-627 | ||
005 | 20230506064207.0 | ||
007 | tu | ||
008 | 221220s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10884-022-10151-4 |2 doi | |
035 | |a (DE-627)OLC2079523945 | ||
035 | |a (DE-He213)s10884-022-10151-4-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Campos, Luccas |e verfasserin |4 aut | |
245 | 1 | 0 | |a On the Critical Norm Concentration for the Inhomogeneous Nonlinear Schrödinger Equation |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 | ||
520 | |a Abstract We consider the inhomogeneous nonlinear Schrödinger equation (INLS) in $${\mathbb {R}}^N$$i∂tu+Δu+|x|-b|u|2σu=0,$$\begin{aligned} i \partial _t u + \Delta u + |x|^{-b} |u|^{2\sigma }u = 0, \end{aligned}$$and show the $$L^2$$-norm concentration for the finite time blow-up solutions in the $$L^2$$-critical case, $$\sigma =\frac{2-b}{N}$$. Moreover, we provide an alternative proof for the classification of minimal mass blow-up solutions, first proved by Genoud and Combet (J Evol Equ 16(2):483–500, 2016, https://doi.org/10.1007/s00028-015-0309-z). For the case $$\frac{2-b}{N}< \sigma < \frac{2-b}{N-2}$$, we show results regarding the $$L^p$$-critical norm concentration, generalizing the argument of Holmer and Roudenko (Appl Math Res eXpress 2007(1):Art. ID abm004, 2007) to the INLS setting. | ||
650 | 4 | |a Inhomogeneous nonlinear Schrödinger equation | |
650 | 4 | |a Mass concentration | |
650 | 4 | |a Critical norm concentration | |
650 | 4 | |a Concentration-compactness | |
700 | 1 | |a Cardoso, Mykael |0 (orcid)0000-0001-9990-7400 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of dynamics and differential equations |d Springer US, 1989 |g 34(2022), 3 vom: 24. März, Seite 2347-2369 |w (DE-627)165666455 |w (DE-600)1008261-X |w (DE-576)023042591 |x 1040-7294 |7 nnns |
773 | 1 | 8 | |g volume:34 |g year:2022 |g number:3 |g day:24 |g month:03 |g pages:2347-2369 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10884-022-10151-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
951 | |a AR | ||
952 | |d 34 |j 2022 |e 3 |b 24 |c 03 |h 2347-2369 |
author_variant |
l c lc m c mc |
---|---|
matchkey_str |
article:10407294:2022----::nhciianrcnetainotenooeeunnie |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s10884-022-10151-4 doi (DE-627)OLC2079523945 (DE-He213)s10884-022-10151-4-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Campos, Luccas verfasserin aut On the Critical Norm Concentration for the Inhomogeneous Nonlinear Schrödinger Equation 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract We consider the inhomogeneous nonlinear Schrödinger equation (INLS) in $${\mathbb {R}}^N$$i∂tu+Δu+|x|-b|u|2σu=0,$$\begin{aligned} i \partial _t u + \Delta u + |x|^{-b} |u|^{2\sigma }u = 0, \end{aligned}$$and show the $$L^2$$-norm concentration for the finite time blow-up solutions in the $$L^2$$-critical case, $$\sigma =\frac{2-b}{N}$$. Moreover, we provide an alternative proof for the classification of minimal mass blow-up solutions, first proved by Genoud and Combet (J Evol Equ 16(2):483–500, 2016, https://doi.org/10.1007/s00028-015-0309-z). For the case $$\frac{2-b}{N}< \sigma < \frac{2-b}{N-2}$$, we show results regarding the $$L^p$$-critical norm concentration, generalizing the argument of Holmer and Roudenko (Appl Math Res eXpress 2007(1):Art. ID abm004, 2007) to the INLS setting. Inhomogeneous nonlinear Schrödinger equation Mass concentration Critical norm concentration Concentration-compactness Cardoso, Mykael (orcid)0000-0001-9990-7400 aut Enthalten in Journal of dynamics and differential equations Springer US, 1989 34(2022), 3 vom: 24. März, Seite 2347-2369 (DE-627)165666455 (DE-600)1008261-X (DE-576)023042591 1040-7294 nnns volume:34 year:2022 number:3 day:24 month:03 pages:2347-2369 https://doi.org/10.1007/s10884-022-10151-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 34 2022 3 24 03 2347-2369 |
spelling |
10.1007/s10884-022-10151-4 doi (DE-627)OLC2079523945 (DE-He213)s10884-022-10151-4-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Campos, Luccas verfasserin aut On the Critical Norm Concentration for the Inhomogeneous Nonlinear Schrödinger Equation 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract We consider the inhomogeneous nonlinear Schrödinger equation (INLS) in $${\mathbb {R}}^N$$i∂tu+Δu+|x|-b|u|2σu=0,$$\begin{aligned} i \partial _t u + \Delta u + |x|^{-b} |u|^{2\sigma }u = 0, \end{aligned}$$and show the $$L^2$$-norm concentration for the finite time blow-up solutions in the $$L^2$$-critical case, $$\sigma =\frac{2-b}{N}$$. Moreover, we provide an alternative proof for the classification of minimal mass blow-up solutions, first proved by Genoud and Combet (J Evol Equ 16(2):483–500, 2016, https://doi.org/10.1007/s00028-015-0309-z). For the case $$\frac{2-b}{N}< \sigma < \frac{2-b}{N-2}$$, we show results regarding the $$L^p$$-critical norm concentration, generalizing the argument of Holmer and Roudenko (Appl Math Res eXpress 2007(1):Art. ID abm004, 2007) to the INLS setting. Inhomogeneous nonlinear Schrödinger equation Mass concentration Critical norm concentration Concentration-compactness Cardoso, Mykael (orcid)0000-0001-9990-7400 aut Enthalten in Journal of dynamics and differential equations Springer US, 1989 34(2022), 3 vom: 24. März, Seite 2347-2369 (DE-627)165666455 (DE-600)1008261-X (DE-576)023042591 1040-7294 nnns volume:34 year:2022 number:3 day:24 month:03 pages:2347-2369 https://doi.org/10.1007/s10884-022-10151-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 34 2022 3 24 03 2347-2369 |
allfields_unstemmed |
10.1007/s10884-022-10151-4 doi (DE-627)OLC2079523945 (DE-He213)s10884-022-10151-4-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Campos, Luccas verfasserin aut On the Critical Norm Concentration for the Inhomogeneous Nonlinear Schrödinger Equation 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract We consider the inhomogeneous nonlinear Schrödinger equation (INLS) in $${\mathbb {R}}^N$$i∂tu+Δu+|x|-b|u|2σu=0,$$\begin{aligned} i \partial _t u + \Delta u + |x|^{-b} |u|^{2\sigma }u = 0, \end{aligned}$$and show the $$L^2$$-norm concentration for the finite time blow-up solutions in the $$L^2$$-critical case, $$\sigma =\frac{2-b}{N}$$. Moreover, we provide an alternative proof for the classification of minimal mass blow-up solutions, first proved by Genoud and Combet (J Evol Equ 16(2):483–500, 2016, https://doi.org/10.1007/s00028-015-0309-z). For the case $$\frac{2-b}{N}< \sigma < \frac{2-b}{N-2}$$, we show results regarding the $$L^p$$-critical norm concentration, generalizing the argument of Holmer and Roudenko (Appl Math Res eXpress 2007(1):Art. ID abm004, 2007) to the INLS setting. Inhomogeneous nonlinear Schrödinger equation Mass concentration Critical norm concentration Concentration-compactness Cardoso, Mykael (orcid)0000-0001-9990-7400 aut Enthalten in Journal of dynamics and differential equations Springer US, 1989 34(2022), 3 vom: 24. März, Seite 2347-2369 (DE-627)165666455 (DE-600)1008261-X (DE-576)023042591 1040-7294 nnns volume:34 year:2022 number:3 day:24 month:03 pages:2347-2369 https://doi.org/10.1007/s10884-022-10151-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 34 2022 3 24 03 2347-2369 |
allfieldsGer |
10.1007/s10884-022-10151-4 doi (DE-627)OLC2079523945 (DE-He213)s10884-022-10151-4-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Campos, Luccas verfasserin aut On the Critical Norm Concentration for the Inhomogeneous Nonlinear Schrödinger Equation 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract We consider the inhomogeneous nonlinear Schrödinger equation (INLS) in $${\mathbb {R}}^N$$i∂tu+Δu+|x|-b|u|2σu=0,$$\begin{aligned} i \partial _t u + \Delta u + |x|^{-b} |u|^{2\sigma }u = 0, \end{aligned}$$and show the $$L^2$$-norm concentration for the finite time blow-up solutions in the $$L^2$$-critical case, $$\sigma =\frac{2-b}{N}$$. Moreover, we provide an alternative proof for the classification of minimal mass blow-up solutions, first proved by Genoud and Combet (J Evol Equ 16(2):483–500, 2016, https://doi.org/10.1007/s00028-015-0309-z). For the case $$\frac{2-b}{N}< \sigma < \frac{2-b}{N-2}$$, we show results regarding the $$L^p$$-critical norm concentration, generalizing the argument of Holmer and Roudenko (Appl Math Res eXpress 2007(1):Art. ID abm004, 2007) to the INLS setting. Inhomogeneous nonlinear Schrödinger equation Mass concentration Critical norm concentration Concentration-compactness Cardoso, Mykael (orcid)0000-0001-9990-7400 aut Enthalten in Journal of dynamics and differential equations Springer US, 1989 34(2022), 3 vom: 24. März, Seite 2347-2369 (DE-627)165666455 (DE-600)1008261-X (DE-576)023042591 1040-7294 nnns volume:34 year:2022 number:3 day:24 month:03 pages:2347-2369 https://doi.org/10.1007/s10884-022-10151-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 34 2022 3 24 03 2347-2369 |
allfieldsSound |
10.1007/s10884-022-10151-4 doi (DE-627)OLC2079523945 (DE-He213)s10884-022-10151-4-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Campos, Luccas verfasserin aut On the Critical Norm Concentration for the Inhomogeneous Nonlinear Schrödinger Equation 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract We consider the inhomogeneous nonlinear Schrödinger equation (INLS) in $${\mathbb {R}}^N$$i∂tu+Δu+|x|-b|u|2σu=0,$$\begin{aligned} i \partial _t u + \Delta u + |x|^{-b} |u|^{2\sigma }u = 0, \end{aligned}$$and show the $$L^2$$-norm concentration for the finite time blow-up solutions in the $$L^2$$-critical case, $$\sigma =\frac{2-b}{N}$$. Moreover, we provide an alternative proof for the classification of minimal mass blow-up solutions, first proved by Genoud and Combet (J Evol Equ 16(2):483–500, 2016, https://doi.org/10.1007/s00028-015-0309-z). For the case $$\frac{2-b}{N}< \sigma < \frac{2-b}{N-2}$$, we show results regarding the $$L^p$$-critical norm concentration, generalizing the argument of Holmer and Roudenko (Appl Math Res eXpress 2007(1):Art. ID abm004, 2007) to the INLS setting. Inhomogeneous nonlinear Schrödinger equation Mass concentration Critical norm concentration Concentration-compactness Cardoso, Mykael (orcid)0000-0001-9990-7400 aut Enthalten in Journal of dynamics and differential equations Springer US, 1989 34(2022), 3 vom: 24. März, Seite 2347-2369 (DE-627)165666455 (DE-600)1008261-X (DE-576)023042591 1040-7294 nnns volume:34 year:2022 number:3 day:24 month:03 pages:2347-2369 https://doi.org/10.1007/s10884-022-10151-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 34 2022 3 24 03 2347-2369 |
language |
English |
source |
Enthalten in Journal of dynamics and differential equations 34(2022), 3 vom: 24. März, Seite 2347-2369 volume:34 year:2022 number:3 day:24 month:03 pages:2347-2369 |
sourceStr |
Enthalten in Journal of dynamics and differential equations 34(2022), 3 vom: 24. März, Seite 2347-2369 volume:34 year:2022 number:3 day:24 month:03 pages:2347-2369 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Inhomogeneous nonlinear Schrödinger equation Mass concentration Critical norm concentration Concentration-compactness |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of dynamics and differential equations |
authorswithroles_txt_mv |
Campos, Luccas @@aut@@ Cardoso, Mykael @@aut@@ |
publishDateDaySort_date |
2022-03-24T00:00:00Z |
hierarchy_top_id |
165666455 |
dewey-sort |
3510 |
id |
OLC2079523945 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2079523945</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506064207.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10884-022-10151-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2079523945</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10884-022-10151-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Campos, Luccas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the Critical Norm Concentration for the Inhomogeneous Nonlinear Schrödinger Equation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We consider the inhomogeneous nonlinear Schrödinger equation (INLS) in $${\mathbb {R}}^N$$i∂tu+Δu+|x|-b|u|2σu=0,$$\begin{aligned} i \partial _t u + \Delta u + |x|^{-b} |u|^{2\sigma }u = 0, \end{aligned}$$and show the $$L^2$$-norm concentration for the finite time blow-up solutions in the $$L^2$$-critical case, $$\sigma =\frac{2-b}{N}$$. Moreover, we provide an alternative proof for the classification of minimal mass blow-up solutions, first proved by Genoud and Combet (J Evol Equ 16(2):483–500, 2016, https://doi.org/10.1007/s00028-015-0309-z). For the case $$\frac{2-b}{N}< \sigma < \frac{2-b}{N-2}$$, we show results regarding the $$L^p$$-critical norm concentration, generalizing the argument of Holmer and Roudenko (Appl Math Res eXpress 2007(1):Art. ID abm004, 2007) to the INLS setting.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inhomogeneous nonlinear Schrödinger equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mass concentration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Critical norm concentration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Concentration-compactness</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cardoso, Mykael</subfield><subfield code="0">(orcid)0000-0001-9990-7400</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of dynamics and differential equations</subfield><subfield code="d">Springer US, 1989</subfield><subfield code="g">34(2022), 3 vom: 24. März, Seite 2347-2369</subfield><subfield code="w">(DE-627)165666455</subfield><subfield code="w">(DE-600)1008261-X</subfield><subfield code="w">(DE-576)023042591</subfield><subfield code="x">1040-7294</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:34</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">day:24</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:2347-2369</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10884-022-10151-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">34</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="b">24</subfield><subfield code="c">03</subfield><subfield code="h">2347-2369</subfield></datafield></record></collection>
|
author |
Campos, Luccas |
spellingShingle |
Campos, Luccas ddc 510 ssgn 17,1 misc Inhomogeneous nonlinear Schrödinger equation misc Mass concentration misc Critical norm concentration misc Concentration-compactness On the Critical Norm Concentration for the Inhomogeneous Nonlinear Schrödinger Equation |
authorStr |
Campos, Luccas |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)165666455 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1040-7294 |
topic_title |
510 VZ 17,1 ssgn On the Critical Norm Concentration for the Inhomogeneous Nonlinear Schrödinger Equation Inhomogeneous nonlinear Schrödinger equation Mass concentration Critical norm concentration Concentration-compactness |
topic |
ddc 510 ssgn 17,1 misc Inhomogeneous nonlinear Schrödinger equation misc Mass concentration misc Critical norm concentration misc Concentration-compactness |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Inhomogeneous nonlinear Schrödinger equation misc Mass concentration misc Critical norm concentration misc Concentration-compactness |
topic_browse |
ddc 510 ssgn 17,1 misc Inhomogeneous nonlinear Schrödinger equation misc Mass concentration misc Critical norm concentration misc Concentration-compactness |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of dynamics and differential equations |
hierarchy_parent_id |
165666455 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of dynamics and differential equations |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)165666455 (DE-600)1008261-X (DE-576)023042591 |
title |
On the Critical Norm Concentration for the Inhomogeneous Nonlinear Schrödinger Equation |
ctrlnum |
(DE-627)OLC2079523945 (DE-He213)s10884-022-10151-4-p |
title_full |
On the Critical Norm Concentration for the Inhomogeneous Nonlinear Schrödinger Equation |
author_sort |
Campos, Luccas |
journal |
Journal of dynamics and differential equations |
journalStr |
Journal of dynamics and differential equations |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
2347 |
author_browse |
Campos, Luccas Cardoso, Mykael |
container_volume |
34 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Campos, Luccas |
doi_str_mv |
10.1007/s10884-022-10151-4 |
normlink |
(ORCID)0000-0001-9990-7400 |
normlink_prefix_str_mv |
(orcid)0000-0001-9990-7400 |
dewey-full |
510 |
title_sort |
on the critical norm concentration for the inhomogeneous nonlinear schrödinger equation |
title_auth |
On the Critical Norm Concentration for the Inhomogeneous Nonlinear Schrödinger Equation |
abstract |
Abstract We consider the inhomogeneous nonlinear Schrödinger equation (INLS) in $${\mathbb {R}}^N$$i∂tu+Δu+|x|-b|u|2σu=0,$$\begin{aligned} i \partial _t u + \Delta u + |x|^{-b} |u|^{2\sigma }u = 0, \end{aligned}$$and show the $$L^2$$-norm concentration for the finite time blow-up solutions in the $$L^2$$-critical case, $$\sigma =\frac{2-b}{N}$$. Moreover, we provide an alternative proof for the classification of minimal mass blow-up solutions, first proved by Genoud and Combet (J Evol Equ 16(2):483–500, 2016, https://doi.org/10.1007/s00028-015-0309-z). For the case $$\frac{2-b}{N}< \sigma < \frac{2-b}{N-2}$$, we show results regarding the $$L^p$$-critical norm concentration, generalizing the argument of Holmer and Roudenko (Appl Math Res eXpress 2007(1):Art. ID abm004, 2007) to the INLS setting. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
abstractGer |
Abstract We consider the inhomogeneous nonlinear Schrödinger equation (INLS) in $${\mathbb {R}}^N$$i∂tu+Δu+|x|-b|u|2σu=0,$$\begin{aligned} i \partial _t u + \Delta u + |x|^{-b} |u|^{2\sigma }u = 0, \end{aligned}$$and show the $$L^2$$-norm concentration for the finite time blow-up solutions in the $$L^2$$-critical case, $$\sigma =\frac{2-b}{N}$$. Moreover, we provide an alternative proof for the classification of minimal mass blow-up solutions, first proved by Genoud and Combet (J Evol Equ 16(2):483–500, 2016, https://doi.org/10.1007/s00028-015-0309-z). For the case $$\frac{2-b}{N}< \sigma < \frac{2-b}{N-2}$$, we show results regarding the $$L^p$$-critical norm concentration, generalizing the argument of Holmer and Roudenko (Appl Math Res eXpress 2007(1):Art. ID abm004, 2007) to the INLS setting. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
abstract_unstemmed |
Abstract We consider the inhomogeneous nonlinear Schrödinger equation (INLS) in $${\mathbb {R}}^N$$i∂tu+Δu+|x|-b|u|2σu=0,$$\begin{aligned} i \partial _t u + \Delta u + |x|^{-b} |u|^{2\sigma }u = 0, \end{aligned}$$and show the $$L^2$$-norm concentration for the finite time blow-up solutions in the $$L^2$$-critical case, $$\sigma =\frac{2-b}{N}$$. Moreover, we provide an alternative proof for the classification of minimal mass blow-up solutions, first proved by Genoud and Combet (J Evol Equ 16(2):483–500, 2016, https://doi.org/10.1007/s00028-015-0309-z). For the case $$\frac{2-b}{N}< \sigma < \frac{2-b}{N-2}$$, we show results regarding the $$L^p$$-critical norm concentration, generalizing the argument of Holmer and Roudenko (Appl Math Res eXpress 2007(1):Art. ID abm004, 2007) to the INLS setting. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT |
container_issue |
3 |
title_short |
On the Critical Norm Concentration for the Inhomogeneous Nonlinear Schrödinger Equation |
url |
https://doi.org/10.1007/s10884-022-10151-4 |
remote_bool |
false |
author2 |
Cardoso, Mykael |
author2Str |
Cardoso, Mykael |
ppnlink |
165666455 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10884-022-10151-4 |
up_date |
2024-07-04T01:14:18.608Z |
_version_ |
1803609082281590784 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2079523945</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506064207.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10884-022-10151-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2079523945</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10884-022-10151-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Campos, Luccas</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On the Critical Norm Concentration for the Inhomogeneous Nonlinear Schrödinger Equation</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We consider the inhomogeneous nonlinear Schrödinger equation (INLS) in $${\mathbb {R}}^N$$i∂tu+Δu+|x|-b|u|2σu=0,$$\begin{aligned} i \partial _t u + \Delta u + |x|^{-b} |u|^{2\sigma }u = 0, \end{aligned}$$and show the $$L^2$$-norm concentration for the finite time blow-up solutions in the $$L^2$$-critical case, $$\sigma =\frac{2-b}{N}$$. Moreover, we provide an alternative proof for the classification of minimal mass blow-up solutions, first proved by Genoud and Combet (J Evol Equ 16(2):483–500, 2016, https://doi.org/10.1007/s00028-015-0309-z). For the case $$\frac{2-b}{N}< \sigma < \frac{2-b}{N-2}$$, we show results regarding the $$L^p$$-critical norm concentration, generalizing the argument of Holmer and Roudenko (Appl Math Res eXpress 2007(1):Art. ID abm004, 2007) to the INLS setting.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Inhomogeneous nonlinear Schrödinger equation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mass concentration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Critical norm concentration</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Concentration-compactness</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cardoso, Mykael</subfield><subfield code="0">(orcid)0000-0001-9990-7400</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of dynamics and differential equations</subfield><subfield code="d">Springer US, 1989</subfield><subfield code="g">34(2022), 3 vom: 24. März, Seite 2347-2369</subfield><subfield code="w">(DE-627)165666455</subfield><subfield code="w">(DE-600)1008261-X</subfield><subfield code="w">(DE-576)023042591</subfield><subfield code="x">1040-7294</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:34</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">day:24</subfield><subfield code="g">month:03</subfield><subfield code="g">pages:2347-2369</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10884-022-10151-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">34</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="b">24</subfield><subfield code="c">03</subfield><subfield code="h">2347-2369</subfield></datafield></record></collection>
|
score |
7.4031916 |