A MUSIC-Based Algorithm For Localization of Hybrid Near-Field and Far-Field Sources
Abstract In this paper, a new multiple signal classification (MUSIC)-based source localization algorithm is proposed to localize a hybrid of near-field (NF) and far-field (FF) sources. The MUSIC estimator for localizing the FF sources is referred to as the FF-MUSIC estimator. On the other hand, the...
Ausführliche Beschreibung
Autor*in: |
Yin, Kejun [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Circuits, systems and signal processing - Springer US, 1982, 41(2022), 11 vom: 06. Juni, Seite 6547-6559 |
---|---|
Übergeordnetes Werk: |
volume:41 ; year:2022 ; number:11 ; day:06 ; month:06 ; pages:6547-6559 |
Links: |
---|
DOI / URN: |
10.1007/s00034-022-02065-9 |
---|
Katalog-ID: |
OLC2079570234 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2079570234 | ||
003 | DE-627 | ||
005 | 20230506065555.0 | ||
007 | tu | ||
008 | 221220s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s00034-022-02065-9 |2 doi | |
035 | |a (DE-627)OLC2079570234 | ||
035 | |a (DE-He213)s00034-022-02065-9-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 600 |q VZ |
100 | 1 | |a Yin, Kejun |e verfasserin |0 (orcid)0000-0003-1057-2531 |4 aut | |
245 | 1 | 0 | |a A MUSIC-Based Algorithm For Localization of Hybrid Near-Field and Far-Field Sources |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 | ||
520 | |a Abstract In this paper, a new multiple signal classification (MUSIC)-based source localization algorithm is proposed to localize a hybrid of near-field (NF) and far-field (FF) sources. The MUSIC estimator for localizing the FF sources is referred to as the FF-MUSIC estimator. On the other hand, the NF-MUSIC estimator is designed for localizing the NF sources as well. In between the processing of these two estimators, the Capon spatial spectrum is exploited to reconstruct a pure NF covariance matrix. The proposed algorithm requires only several one-dimensional (1-D) spectral searches and does not involve any computations of high-dimensional iterative optimization, higher-order cumulants, and parameter pairing. Unlike the existing algorithms, which are derived based on the second-order Taylor series approximation, i.e., Fresnel approximation, of the spatial phase factor, the proposed algorithm is applicable to any-order expansion of the spatial phase factor. Moreover, it works well for non-uniform arrays, whereas the existing algorithms can only be applied to uniform arrays. | ||
650 | 4 | |a Source localization | |
650 | 4 | |a Far-field | |
650 | 4 | |a Near-field | |
650 | 4 | |a MUSIC algorithm | |
700 | 1 | |a Dai, Yun |4 aut | |
700 | 1 | |a Gao, Chunming |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Circuits, systems and signal processing |d Springer US, 1982 |g 41(2022), 11 vom: 06. Juni, Seite 6547-6559 |w (DE-627)130312134 |w (DE-600)588684-3 |w (DE-576)015889939 |x 0278-081X |7 nnns |
773 | 1 | 8 | |g volume:41 |g year:2022 |g number:11 |g day:06 |g month:06 |g pages:6547-6559 |
856 | 4 | 1 | |u https://doi.org/10.1007/s00034-022-02065-9 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a GBV_ILN_2244 | ||
951 | |a AR | ||
952 | |d 41 |j 2022 |e 11 |b 06 |c 06 |h 6547-6559 |
author_variant |
k y ky y d yd c g cg |
---|---|
matchkey_str |
article:0278081X:2022----::mscaeagrtmolclztoohbinafe |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s00034-022-02065-9 doi (DE-627)OLC2079570234 (DE-He213)s00034-022-02065-9-p DE-627 ger DE-627 rakwb eng 600 VZ Yin, Kejun verfasserin (orcid)0000-0003-1057-2531 aut A MUSIC-Based Algorithm For Localization of Hybrid Near-Field and Far-Field Sources 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract In this paper, a new multiple signal classification (MUSIC)-based source localization algorithm is proposed to localize a hybrid of near-field (NF) and far-field (FF) sources. The MUSIC estimator for localizing the FF sources is referred to as the FF-MUSIC estimator. On the other hand, the NF-MUSIC estimator is designed for localizing the NF sources as well. In between the processing of these two estimators, the Capon spatial spectrum is exploited to reconstruct a pure NF covariance matrix. The proposed algorithm requires only several one-dimensional (1-D) spectral searches and does not involve any computations of high-dimensional iterative optimization, higher-order cumulants, and parameter pairing. Unlike the existing algorithms, which are derived based on the second-order Taylor series approximation, i.e., Fresnel approximation, of the spatial phase factor, the proposed algorithm is applicable to any-order expansion of the spatial phase factor. Moreover, it works well for non-uniform arrays, whereas the existing algorithms can only be applied to uniform arrays. Source localization Far-field Near-field MUSIC algorithm Dai, Yun aut Gao, Chunming aut Enthalten in Circuits, systems and signal processing Springer US, 1982 41(2022), 11 vom: 06. Juni, Seite 6547-6559 (DE-627)130312134 (DE-600)588684-3 (DE-576)015889939 0278-081X nnns volume:41 year:2022 number:11 day:06 month:06 pages:6547-6559 https://doi.org/10.1007/s00034-022-02065-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2244 AR 41 2022 11 06 06 6547-6559 |
spelling |
10.1007/s00034-022-02065-9 doi (DE-627)OLC2079570234 (DE-He213)s00034-022-02065-9-p DE-627 ger DE-627 rakwb eng 600 VZ Yin, Kejun verfasserin (orcid)0000-0003-1057-2531 aut A MUSIC-Based Algorithm For Localization of Hybrid Near-Field and Far-Field Sources 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract In this paper, a new multiple signal classification (MUSIC)-based source localization algorithm is proposed to localize a hybrid of near-field (NF) and far-field (FF) sources. The MUSIC estimator for localizing the FF sources is referred to as the FF-MUSIC estimator. On the other hand, the NF-MUSIC estimator is designed for localizing the NF sources as well. In between the processing of these two estimators, the Capon spatial spectrum is exploited to reconstruct a pure NF covariance matrix. The proposed algorithm requires only several one-dimensional (1-D) spectral searches and does not involve any computations of high-dimensional iterative optimization, higher-order cumulants, and parameter pairing. Unlike the existing algorithms, which are derived based on the second-order Taylor series approximation, i.e., Fresnel approximation, of the spatial phase factor, the proposed algorithm is applicable to any-order expansion of the spatial phase factor. Moreover, it works well for non-uniform arrays, whereas the existing algorithms can only be applied to uniform arrays. Source localization Far-field Near-field MUSIC algorithm Dai, Yun aut Gao, Chunming aut Enthalten in Circuits, systems and signal processing Springer US, 1982 41(2022), 11 vom: 06. Juni, Seite 6547-6559 (DE-627)130312134 (DE-600)588684-3 (DE-576)015889939 0278-081X nnns volume:41 year:2022 number:11 day:06 month:06 pages:6547-6559 https://doi.org/10.1007/s00034-022-02065-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2244 AR 41 2022 11 06 06 6547-6559 |
allfields_unstemmed |
10.1007/s00034-022-02065-9 doi (DE-627)OLC2079570234 (DE-He213)s00034-022-02065-9-p DE-627 ger DE-627 rakwb eng 600 VZ Yin, Kejun verfasserin (orcid)0000-0003-1057-2531 aut A MUSIC-Based Algorithm For Localization of Hybrid Near-Field and Far-Field Sources 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract In this paper, a new multiple signal classification (MUSIC)-based source localization algorithm is proposed to localize a hybrid of near-field (NF) and far-field (FF) sources. The MUSIC estimator for localizing the FF sources is referred to as the FF-MUSIC estimator. On the other hand, the NF-MUSIC estimator is designed for localizing the NF sources as well. In between the processing of these two estimators, the Capon spatial spectrum is exploited to reconstruct a pure NF covariance matrix. The proposed algorithm requires only several one-dimensional (1-D) spectral searches and does not involve any computations of high-dimensional iterative optimization, higher-order cumulants, and parameter pairing. Unlike the existing algorithms, which are derived based on the second-order Taylor series approximation, i.e., Fresnel approximation, of the spatial phase factor, the proposed algorithm is applicable to any-order expansion of the spatial phase factor. Moreover, it works well for non-uniform arrays, whereas the existing algorithms can only be applied to uniform arrays. Source localization Far-field Near-field MUSIC algorithm Dai, Yun aut Gao, Chunming aut Enthalten in Circuits, systems and signal processing Springer US, 1982 41(2022), 11 vom: 06. Juni, Seite 6547-6559 (DE-627)130312134 (DE-600)588684-3 (DE-576)015889939 0278-081X nnns volume:41 year:2022 number:11 day:06 month:06 pages:6547-6559 https://doi.org/10.1007/s00034-022-02065-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2244 AR 41 2022 11 06 06 6547-6559 |
allfieldsGer |
10.1007/s00034-022-02065-9 doi (DE-627)OLC2079570234 (DE-He213)s00034-022-02065-9-p DE-627 ger DE-627 rakwb eng 600 VZ Yin, Kejun verfasserin (orcid)0000-0003-1057-2531 aut A MUSIC-Based Algorithm For Localization of Hybrid Near-Field and Far-Field Sources 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract In this paper, a new multiple signal classification (MUSIC)-based source localization algorithm is proposed to localize a hybrid of near-field (NF) and far-field (FF) sources. The MUSIC estimator for localizing the FF sources is referred to as the FF-MUSIC estimator. On the other hand, the NF-MUSIC estimator is designed for localizing the NF sources as well. In between the processing of these two estimators, the Capon spatial spectrum is exploited to reconstruct a pure NF covariance matrix. The proposed algorithm requires only several one-dimensional (1-D) spectral searches and does not involve any computations of high-dimensional iterative optimization, higher-order cumulants, and parameter pairing. Unlike the existing algorithms, which are derived based on the second-order Taylor series approximation, i.e., Fresnel approximation, of the spatial phase factor, the proposed algorithm is applicable to any-order expansion of the spatial phase factor. Moreover, it works well for non-uniform arrays, whereas the existing algorithms can only be applied to uniform arrays. Source localization Far-field Near-field MUSIC algorithm Dai, Yun aut Gao, Chunming aut Enthalten in Circuits, systems and signal processing Springer US, 1982 41(2022), 11 vom: 06. Juni, Seite 6547-6559 (DE-627)130312134 (DE-600)588684-3 (DE-576)015889939 0278-081X nnns volume:41 year:2022 number:11 day:06 month:06 pages:6547-6559 https://doi.org/10.1007/s00034-022-02065-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2244 AR 41 2022 11 06 06 6547-6559 |
allfieldsSound |
10.1007/s00034-022-02065-9 doi (DE-627)OLC2079570234 (DE-He213)s00034-022-02065-9-p DE-627 ger DE-627 rakwb eng 600 VZ Yin, Kejun verfasserin (orcid)0000-0003-1057-2531 aut A MUSIC-Based Algorithm For Localization of Hybrid Near-Field and Far-Field Sources 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract In this paper, a new multiple signal classification (MUSIC)-based source localization algorithm is proposed to localize a hybrid of near-field (NF) and far-field (FF) sources. The MUSIC estimator for localizing the FF sources is referred to as the FF-MUSIC estimator. On the other hand, the NF-MUSIC estimator is designed for localizing the NF sources as well. In between the processing of these two estimators, the Capon spatial spectrum is exploited to reconstruct a pure NF covariance matrix. The proposed algorithm requires only several one-dimensional (1-D) spectral searches and does not involve any computations of high-dimensional iterative optimization, higher-order cumulants, and parameter pairing. Unlike the existing algorithms, which are derived based on the second-order Taylor series approximation, i.e., Fresnel approximation, of the spatial phase factor, the proposed algorithm is applicable to any-order expansion of the spatial phase factor. Moreover, it works well for non-uniform arrays, whereas the existing algorithms can only be applied to uniform arrays. Source localization Far-field Near-field MUSIC algorithm Dai, Yun aut Gao, Chunming aut Enthalten in Circuits, systems and signal processing Springer US, 1982 41(2022), 11 vom: 06. Juni, Seite 6547-6559 (DE-627)130312134 (DE-600)588684-3 (DE-576)015889939 0278-081X nnns volume:41 year:2022 number:11 day:06 month:06 pages:6547-6559 https://doi.org/10.1007/s00034-022-02065-9 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2244 AR 41 2022 11 06 06 6547-6559 |
language |
English |
source |
Enthalten in Circuits, systems and signal processing 41(2022), 11 vom: 06. Juni, Seite 6547-6559 volume:41 year:2022 number:11 day:06 month:06 pages:6547-6559 |
sourceStr |
Enthalten in Circuits, systems and signal processing 41(2022), 11 vom: 06. Juni, Seite 6547-6559 volume:41 year:2022 number:11 day:06 month:06 pages:6547-6559 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Source localization Far-field Near-field MUSIC algorithm |
dewey-raw |
600 |
isfreeaccess_bool |
false |
container_title |
Circuits, systems and signal processing |
authorswithroles_txt_mv |
Yin, Kejun @@aut@@ Dai, Yun @@aut@@ Gao, Chunming @@aut@@ |
publishDateDaySort_date |
2022-06-06T00:00:00Z |
hierarchy_top_id |
130312134 |
dewey-sort |
3600 |
id |
OLC2079570234 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2079570234</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506065555.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00034-022-02065-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2079570234</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00034-022-02065-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yin, Kejun</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1057-2531</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A MUSIC-Based Algorithm For Localization of Hybrid Near-Field and Far-Field Sources</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, a new multiple signal classification (MUSIC)-based source localization algorithm is proposed to localize a hybrid of near-field (NF) and far-field (FF) sources. The MUSIC estimator for localizing the FF sources is referred to as the FF-MUSIC estimator. On the other hand, the NF-MUSIC estimator is designed for localizing the NF sources as well. In between the processing of these two estimators, the Capon spatial spectrum is exploited to reconstruct a pure NF covariance matrix. The proposed algorithm requires only several one-dimensional (1-D) spectral searches and does not involve any computations of high-dimensional iterative optimization, higher-order cumulants, and parameter pairing. Unlike the existing algorithms, which are derived based on the second-order Taylor series approximation, i.e., Fresnel approximation, of the spatial phase factor, the proposed algorithm is applicable to any-order expansion of the spatial phase factor. Moreover, it works well for non-uniform arrays, whereas the existing algorithms can only be applied to uniform arrays.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Source localization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Far-field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Near-field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MUSIC algorithm</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dai, Yun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Chunming</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Circuits, systems and signal processing</subfield><subfield code="d">Springer US, 1982</subfield><subfield code="g">41(2022), 11 vom: 06. Juni, Seite 6547-6559</subfield><subfield code="w">(DE-627)130312134</subfield><subfield code="w">(DE-600)588684-3</subfield><subfield code="w">(DE-576)015889939</subfield><subfield code="x">0278-081X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:41</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:11</subfield><subfield code="g">day:06</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:6547-6559</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00034-022-02065-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2244</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">41</subfield><subfield code="j">2022</subfield><subfield code="e">11</subfield><subfield code="b">06</subfield><subfield code="c">06</subfield><subfield code="h">6547-6559</subfield></datafield></record></collection>
|
author |
Yin, Kejun |
spellingShingle |
Yin, Kejun ddc 600 misc Source localization misc Far-field misc Near-field misc MUSIC algorithm A MUSIC-Based Algorithm For Localization of Hybrid Near-Field and Far-Field Sources |
authorStr |
Yin, Kejun |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130312134 |
format |
Article |
dewey-ones |
600 - Technology |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0278-081X |
topic_title |
600 VZ A MUSIC-Based Algorithm For Localization of Hybrid Near-Field and Far-Field Sources Source localization Far-field Near-field MUSIC algorithm |
topic |
ddc 600 misc Source localization misc Far-field misc Near-field misc MUSIC algorithm |
topic_unstemmed |
ddc 600 misc Source localization misc Far-field misc Near-field misc MUSIC algorithm |
topic_browse |
ddc 600 misc Source localization misc Far-field misc Near-field misc MUSIC algorithm |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Circuits, systems and signal processing |
hierarchy_parent_id |
130312134 |
dewey-tens |
600 - Technology |
hierarchy_top_title |
Circuits, systems and signal processing |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130312134 (DE-600)588684-3 (DE-576)015889939 |
title |
A MUSIC-Based Algorithm For Localization of Hybrid Near-Field and Far-Field Sources |
ctrlnum |
(DE-627)OLC2079570234 (DE-He213)s00034-022-02065-9-p |
title_full |
A MUSIC-Based Algorithm For Localization of Hybrid Near-Field and Far-Field Sources |
author_sort |
Yin, Kejun |
journal |
Circuits, systems and signal processing |
journalStr |
Circuits, systems and signal processing |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
6547 |
author_browse |
Yin, Kejun Dai, Yun Gao, Chunming |
container_volume |
41 |
class |
600 VZ |
format_se |
Aufsätze |
author-letter |
Yin, Kejun |
doi_str_mv |
10.1007/s00034-022-02065-9 |
normlink |
(ORCID)0000-0003-1057-2531 |
normlink_prefix_str_mv |
(orcid)0000-0003-1057-2531 |
dewey-full |
600 |
title_sort |
a music-based algorithm for localization of hybrid near-field and far-field sources |
title_auth |
A MUSIC-Based Algorithm For Localization of Hybrid Near-Field and Far-Field Sources |
abstract |
Abstract In this paper, a new multiple signal classification (MUSIC)-based source localization algorithm is proposed to localize a hybrid of near-field (NF) and far-field (FF) sources. The MUSIC estimator for localizing the FF sources is referred to as the FF-MUSIC estimator. On the other hand, the NF-MUSIC estimator is designed for localizing the NF sources as well. In between the processing of these two estimators, the Capon spatial spectrum is exploited to reconstruct a pure NF covariance matrix. The proposed algorithm requires only several one-dimensional (1-D) spectral searches and does not involve any computations of high-dimensional iterative optimization, higher-order cumulants, and parameter pairing. Unlike the existing algorithms, which are derived based on the second-order Taylor series approximation, i.e., Fresnel approximation, of the spatial phase factor, the proposed algorithm is applicable to any-order expansion of the spatial phase factor. Moreover, it works well for non-uniform arrays, whereas the existing algorithms can only be applied to uniform arrays. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
abstractGer |
Abstract In this paper, a new multiple signal classification (MUSIC)-based source localization algorithm is proposed to localize a hybrid of near-field (NF) and far-field (FF) sources. The MUSIC estimator for localizing the FF sources is referred to as the FF-MUSIC estimator. On the other hand, the NF-MUSIC estimator is designed for localizing the NF sources as well. In between the processing of these two estimators, the Capon spatial spectrum is exploited to reconstruct a pure NF covariance matrix. The proposed algorithm requires only several one-dimensional (1-D) spectral searches and does not involve any computations of high-dimensional iterative optimization, higher-order cumulants, and parameter pairing. Unlike the existing algorithms, which are derived based on the second-order Taylor series approximation, i.e., Fresnel approximation, of the spatial phase factor, the proposed algorithm is applicable to any-order expansion of the spatial phase factor. Moreover, it works well for non-uniform arrays, whereas the existing algorithms can only be applied to uniform arrays. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
abstract_unstemmed |
Abstract In this paper, a new multiple signal classification (MUSIC)-based source localization algorithm is proposed to localize a hybrid of near-field (NF) and far-field (FF) sources. The MUSIC estimator for localizing the FF sources is referred to as the FF-MUSIC estimator. On the other hand, the NF-MUSIC estimator is designed for localizing the NF sources as well. In between the processing of these two estimators, the Capon spatial spectrum is exploited to reconstruct a pure NF covariance matrix. The proposed algorithm requires only several one-dimensional (1-D) spectral searches and does not involve any computations of high-dimensional iterative optimization, higher-order cumulants, and parameter pairing. Unlike the existing algorithms, which are derived based on the second-order Taylor series approximation, i.e., Fresnel approximation, of the spatial phase factor, the proposed algorithm is applicable to any-order expansion of the spatial phase factor. Moreover, it works well for non-uniform arrays, whereas the existing algorithms can only be applied to uniform arrays. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC GBV_ILN_2244 |
container_issue |
11 |
title_short |
A MUSIC-Based Algorithm For Localization of Hybrid Near-Field and Far-Field Sources |
url |
https://doi.org/10.1007/s00034-022-02065-9 |
remote_bool |
false |
author2 |
Dai, Yun Gao, Chunming |
author2Str |
Dai, Yun Gao, Chunming |
ppnlink |
130312134 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s00034-022-02065-9 |
up_date |
2024-07-04T01:23:51.126Z |
_version_ |
1803609682609176576 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2079570234</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506065555.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221220s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s00034-022-02065-9</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2079570234</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s00034-022-02065-9-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">600</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Yin, Kejun</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1057-2531</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">A MUSIC-Based Algorithm For Localization of Hybrid Near-Field and Far-Field Sources</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, a new multiple signal classification (MUSIC)-based source localization algorithm is proposed to localize a hybrid of near-field (NF) and far-field (FF) sources. The MUSIC estimator for localizing the FF sources is referred to as the FF-MUSIC estimator. On the other hand, the NF-MUSIC estimator is designed for localizing the NF sources as well. In between the processing of these two estimators, the Capon spatial spectrum is exploited to reconstruct a pure NF covariance matrix. The proposed algorithm requires only several one-dimensional (1-D) spectral searches and does not involve any computations of high-dimensional iterative optimization, higher-order cumulants, and parameter pairing. Unlike the existing algorithms, which are derived based on the second-order Taylor series approximation, i.e., Fresnel approximation, of the spatial phase factor, the proposed algorithm is applicable to any-order expansion of the spatial phase factor. Moreover, it works well for non-uniform arrays, whereas the existing algorithms can only be applied to uniform arrays.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Source localization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Far-field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Near-field</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MUSIC algorithm</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dai, Yun</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Gao, Chunming</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Circuits, systems and signal processing</subfield><subfield code="d">Springer US, 1982</subfield><subfield code="g">41(2022), 11 vom: 06. Juni, Seite 6547-6559</subfield><subfield code="w">(DE-627)130312134</subfield><subfield code="w">(DE-600)588684-3</subfield><subfield code="w">(DE-576)015889939</subfield><subfield code="x">0278-081X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:41</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:11</subfield><subfield code="g">day:06</subfield><subfield code="g">month:06</subfield><subfield code="g">pages:6547-6559</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s00034-022-02065-9</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2244</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">41</subfield><subfield code="j">2022</subfield><subfield code="e">11</subfield><subfield code="b">06</subfield><subfield code="c">06</subfield><subfield code="h">6547-6559</subfield></datafield></record></collection>
|
score |
7.4012547 |