Efficiently solving the thief orienteering problem with a max–min ant colony optimization approach
Abstract We tackle the thief orienteering problem (ThOP), an academic multi-component problem that combines two classical combinatorial problems, namely the Knapsack Problem and the Orienteering Problem. In the ThOP, a thief has a time limit to steal items that distributed in a given set of cities....
Ausführliche Beschreibung
Autor*in: |
Chagas, Jonatas B. C. [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Optimization letters - Springer Berlin Heidelberg, 2007, 16(2021), 8 vom: 08. Nov., Seite 2313-2331 |
---|---|
Übergeordnetes Werk: |
volume:16 ; year:2021 ; number:8 ; day:08 ; month:11 ; pages:2313-2331 |
Links: |
---|
DOI / URN: |
10.1007/s11590-021-01824-y |
---|
Katalog-ID: |
OLC2079680145 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2079680145 | ||
003 | DE-627 | ||
005 | 20230506073137.0 | ||
007 | tu | ||
008 | 221221s2021 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11590-021-01824-y |2 doi | |
035 | |a (DE-627)OLC2079680145 | ||
035 | |a (DE-He213)s11590-021-01824-y-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
082 | 0 | 4 | |a 510 |q VZ |
100 | 1 | |a Chagas, Jonatas B. C. |e verfasserin |0 (orcid)0000-0001-7965-8419 |4 aut | |
245 | 1 | 0 | |a Efficiently solving the thief orienteering problem with a max–min ant colony optimization approach |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 | ||
520 | |a Abstract We tackle the thief orienteering problem (ThOP), an academic multi-component problem that combines two classical combinatorial problems, namely the Knapsack Problem and the Orienteering Problem. In the ThOP, a thief has a time limit to steal items that distributed in a given set of cities. While traveling, the thief collects items by storing them in their knapsack, which in turn reduces the travel speed. The thief has as the objective to maximize the total profit of the stolen items. In this article, we present an approach that combines swarm-intelligence with a randomized packing heuristic. Our solution approach outperforms existing works on almost all the 432 benchmarking instances, with significant improvements. | ||
650 | 4 | |a Ant colony optimization | |
650 | 4 | |a Multi-component problems | |
650 | 4 | |a Knapsack problem | |
650 | 4 | |a Orienteering problem | |
700 | 1 | |a Wagner, Markus |0 (orcid)0000-0002-3124-0061 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Optimization letters |d Springer Berlin Heidelberg, 2007 |g 16(2021), 8 vom: 08. Nov., Seite 2313-2331 |w (DE-627)527562920 |w (DE-600)2274663-8 |w (DE-576)272713724 |x 1862-4472 |7 nnns |
773 | 1 | 8 | |g volume:16 |g year:2021 |g number:8 |g day:08 |g month:11 |g pages:2313-2331 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11590-021-01824-y |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-WIW | ||
912 | |a GBV_ILN_267 | ||
912 | |a GBV_ILN_2018 | ||
951 | |a AR | ||
952 | |d 16 |j 2021 |e 8 |b 08 |c 11 |h 2313-2331 |
author_variant |
j b c c jbc jbcc m w mw |
---|---|
matchkey_str |
article:18624472:2021----::fiinlslightifreteigrbewtaamnncl |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s11590-021-01824-y doi (DE-627)OLC2079680145 (DE-He213)s11590-021-01824-y-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ Chagas, Jonatas B. C. verfasserin (orcid)0000-0001-7965-8419 aut Efficiently solving the thief orienteering problem with a max–min ant colony optimization approach 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract We tackle the thief orienteering problem (ThOP), an academic multi-component problem that combines two classical combinatorial problems, namely the Knapsack Problem and the Orienteering Problem. In the ThOP, a thief has a time limit to steal items that distributed in a given set of cities. While traveling, the thief collects items by storing them in their knapsack, which in turn reduces the travel speed. The thief has as the objective to maximize the total profit of the stolen items. In this article, we present an approach that combines swarm-intelligence with a randomized packing heuristic. Our solution approach outperforms existing works on almost all the 432 benchmarking instances, with significant improvements. Ant colony optimization Multi-component problems Knapsack problem Orienteering problem Wagner, Markus (orcid)0000-0002-3124-0061 aut Enthalten in Optimization letters Springer Berlin Heidelberg, 2007 16(2021), 8 vom: 08. Nov., Seite 2313-2331 (DE-627)527562920 (DE-600)2274663-8 (DE-576)272713724 1862-4472 nnns volume:16 year:2021 number:8 day:08 month:11 pages:2313-2331 https://doi.org/10.1007/s11590-021-01824-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW GBV_ILN_267 GBV_ILN_2018 AR 16 2021 8 08 11 2313-2331 |
spelling |
10.1007/s11590-021-01824-y doi (DE-627)OLC2079680145 (DE-He213)s11590-021-01824-y-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ Chagas, Jonatas B. C. verfasserin (orcid)0000-0001-7965-8419 aut Efficiently solving the thief orienteering problem with a max–min ant colony optimization approach 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract We tackle the thief orienteering problem (ThOP), an academic multi-component problem that combines two classical combinatorial problems, namely the Knapsack Problem and the Orienteering Problem. In the ThOP, a thief has a time limit to steal items that distributed in a given set of cities. While traveling, the thief collects items by storing them in their knapsack, which in turn reduces the travel speed. The thief has as the objective to maximize the total profit of the stolen items. In this article, we present an approach that combines swarm-intelligence with a randomized packing heuristic. Our solution approach outperforms existing works on almost all the 432 benchmarking instances, with significant improvements. Ant colony optimization Multi-component problems Knapsack problem Orienteering problem Wagner, Markus (orcid)0000-0002-3124-0061 aut Enthalten in Optimization letters Springer Berlin Heidelberg, 2007 16(2021), 8 vom: 08. Nov., Seite 2313-2331 (DE-627)527562920 (DE-600)2274663-8 (DE-576)272713724 1862-4472 nnns volume:16 year:2021 number:8 day:08 month:11 pages:2313-2331 https://doi.org/10.1007/s11590-021-01824-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW GBV_ILN_267 GBV_ILN_2018 AR 16 2021 8 08 11 2313-2331 |
allfields_unstemmed |
10.1007/s11590-021-01824-y doi (DE-627)OLC2079680145 (DE-He213)s11590-021-01824-y-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ Chagas, Jonatas B. C. verfasserin (orcid)0000-0001-7965-8419 aut Efficiently solving the thief orienteering problem with a max–min ant colony optimization approach 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract We tackle the thief orienteering problem (ThOP), an academic multi-component problem that combines two classical combinatorial problems, namely the Knapsack Problem and the Orienteering Problem. In the ThOP, a thief has a time limit to steal items that distributed in a given set of cities. While traveling, the thief collects items by storing them in their knapsack, which in turn reduces the travel speed. The thief has as the objective to maximize the total profit of the stolen items. In this article, we present an approach that combines swarm-intelligence with a randomized packing heuristic. Our solution approach outperforms existing works on almost all the 432 benchmarking instances, with significant improvements. Ant colony optimization Multi-component problems Knapsack problem Orienteering problem Wagner, Markus (orcid)0000-0002-3124-0061 aut Enthalten in Optimization letters Springer Berlin Heidelberg, 2007 16(2021), 8 vom: 08. Nov., Seite 2313-2331 (DE-627)527562920 (DE-600)2274663-8 (DE-576)272713724 1862-4472 nnns volume:16 year:2021 number:8 day:08 month:11 pages:2313-2331 https://doi.org/10.1007/s11590-021-01824-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW GBV_ILN_267 GBV_ILN_2018 AR 16 2021 8 08 11 2313-2331 |
allfieldsGer |
10.1007/s11590-021-01824-y doi (DE-627)OLC2079680145 (DE-He213)s11590-021-01824-y-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ Chagas, Jonatas B. C. verfasserin (orcid)0000-0001-7965-8419 aut Efficiently solving the thief orienteering problem with a max–min ant colony optimization approach 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract We tackle the thief orienteering problem (ThOP), an academic multi-component problem that combines two classical combinatorial problems, namely the Knapsack Problem and the Orienteering Problem. In the ThOP, a thief has a time limit to steal items that distributed in a given set of cities. While traveling, the thief collects items by storing them in their knapsack, which in turn reduces the travel speed. The thief has as the objective to maximize the total profit of the stolen items. In this article, we present an approach that combines swarm-intelligence with a randomized packing heuristic. Our solution approach outperforms existing works on almost all the 432 benchmarking instances, with significant improvements. Ant colony optimization Multi-component problems Knapsack problem Orienteering problem Wagner, Markus (orcid)0000-0002-3124-0061 aut Enthalten in Optimization letters Springer Berlin Heidelberg, 2007 16(2021), 8 vom: 08. Nov., Seite 2313-2331 (DE-627)527562920 (DE-600)2274663-8 (DE-576)272713724 1862-4472 nnns volume:16 year:2021 number:8 day:08 month:11 pages:2313-2331 https://doi.org/10.1007/s11590-021-01824-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW GBV_ILN_267 GBV_ILN_2018 AR 16 2021 8 08 11 2313-2331 |
allfieldsSound |
10.1007/s11590-021-01824-y doi (DE-627)OLC2079680145 (DE-He213)s11590-021-01824-y-p DE-627 ger DE-627 rakwb eng 510 VZ 510 VZ Chagas, Jonatas B. C. verfasserin (orcid)0000-0001-7965-8419 aut Efficiently solving the thief orienteering problem with a max–min ant colony optimization approach 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 Abstract We tackle the thief orienteering problem (ThOP), an academic multi-component problem that combines two classical combinatorial problems, namely the Knapsack Problem and the Orienteering Problem. In the ThOP, a thief has a time limit to steal items that distributed in a given set of cities. While traveling, the thief collects items by storing them in their knapsack, which in turn reduces the travel speed. The thief has as the objective to maximize the total profit of the stolen items. In this article, we present an approach that combines swarm-intelligence with a randomized packing heuristic. Our solution approach outperforms existing works on almost all the 432 benchmarking instances, with significant improvements. Ant colony optimization Multi-component problems Knapsack problem Orienteering problem Wagner, Markus (orcid)0000-0002-3124-0061 aut Enthalten in Optimization letters Springer Berlin Heidelberg, 2007 16(2021), 8 vom: 08. Nov., Seite 2313-2331 (DE-627)527562920 (DE-600)2274663-8 (DE-576)272713724 1862-4472 nnns volume:16 year:2021 number:8 day:08 month:11 pages:2313-2331 https://doi.org/10.1007/s11590-021-01824-y lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW GBV_ILN_267 GBV_ILN_2018 AR 16 2021 8 08 11 2313-2331 |
language |
English |
source |
Enthalten in Optimization letters 16(2021), 8 vom: 08. Nov., Seite 2313-2331 volume:16 year:2021 number:8 day:08 month:11 pages:2313-2331 |
sourceStr |
Enthalten in Optimization letters 16(2021), 8 vom: 08. Nov., Seite 2313-2331 volume:16 year:2021 number:8 day:08 month:11 pages:2313-2331 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Ant colony optimization Multi-component problems Knapsack problem Orienteering problem |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Optimization letters |
authorswithroles_txt_mv |
Chagas, Jonatas B. C. @@aut@@ Wagner, Markus @@aut@@ |
publishDateDaySort_date |
2021-11-08T00:00:00Z |
hierarchy_top_id |
527562920 |
dewey-sort |
3510 |
id |
OLC2079680145 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2079680145</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506073137.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221221s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11590-021-01824-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2079680145</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11590-021-01824-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chagas, Jonatas B. C.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-7965-8419</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Efficiently solving the thief orienteering problem with a max–min ant colony optimization approach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We tackle the thief orienteering problem (ThOP), an academic multi-component problem that combines two classical combinatorial problems, namely the Knapsack Problem and the Orienteering Problem. In the ThOP, a thief has a time limit to steal items that distributed in a given set of cities. While traveling, the thief collects items by storing them in their knapsack, which in turn reduces the travel speed. The thief has as the objective to maximize the total profit of the stolen items. In this article, we present an approach that combines swarm-intelligence with a randomized packing heuristic. Our solution approach outperforms existing works on almost all the 432 benchmarking instances, with significant improvements.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ant colony optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-component problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Knapsack problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orienteering problem</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wagner, Markus</subfield><subfield code="0">(orcid)0000-0002-3124-0061</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Optimization letters</subfield><subfield code="d">Springer Berlin Heidelberg, 2007</subfield><subfield code="g">16(2021), 8 vom: 08. Nov., Seite 2313-2331</subfield><subfield code="w">(DE-627)527562920</subfield><subfield code="w">(DE-600)2274663-8</subfield><subfield code="w">(DE-576)272713724</subfield><subfield code="x">1862-4472</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:8</subfield><subfield code="g">day:08</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:2313-2331</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11590-021-01824-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2021</subfield><subfield code="e">8</subfield><subfield code="b">08</subfield><subfield code="c">11</subfield><subfield code="h">2313-2331</subfield></datafield></record></collection>
|
author |
Chagas, Jonatas B. C. |
spellingShingle |
Chagas, Jonatas B. C. ddc 510 misc Ant colony optimization misc Multi-component problems misc Knapsack problem misc Orienteering problem Efficiently solving the thief orienteering problem with a max–min ant colony optimization approach |
authorStr |
Chagas, Jonatas B. C. |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)527562920 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1862-4472 |
topic_title |
510 VZ Efficiently solving the thief orienteering problem with a max–min ant colony optimization approach Ant colony optimization Multi-component problems Knapsack problem Orienteering problem |
topic |
ddc 510 misc Ant colony optimization misc Multi-component problems misc Knapsack problem misc Orienteering problem |
topic_unstemmed |
ddc 510 misc Ant colony optimization misc Multi-component problems misc Knapsack problem misc Orienteering problem |
topic_browse |
ddc 510 misc Ant colony optimization misc Multi-component problems misc Knapsack problem misc Orienteering problem |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Optimization letters |
hierarchy_parent_id |
527562920 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Optimization letters |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)527562920 (DE-600)2274663-8 (DE-576)272713724 |
title |
Efficiently solving the thief orienteering problem with a max–min ant colony optimization approach |
ctrlnum |
(DE-627)OLC2079680145 (DE-He213)s11590-021-01824-y-p |
title_full |
Efficiently solving the thief orienteering problem with a max–min ant colony optimization approach |
author_sort |
Chagas, Jonatas B. C. |
journal |
Optimization letters |
journalStr |
Optimization letters |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
2313 |
author_browse |
Chagas, Jonatas B. C. Wagner, Markus |
container_volume |
16 |
class |
510 VZ |
format_se |
Aufsätze |
author-letter |
Chagas, Jonatas B. C. |
doi_str_mv |
10.1007/s11590-021-01824-y |
normlink |
(ORCID)0000-0001-7965-8419 (ORCID)0000-0002-3124-0061 |
normlink_prefix_str_mv |
(orcid)0000-0001-7965-8419 (orcid)0000-0002-3124-0061 |
dewey-full |
510 |
title_sort |
efficiently solving the thief orienteering problem with a max–min ant colony optimization approach |
title_auth |
Efficiently solving the thief orienteering problem with a max–min ant colony optimization approach |
abstract |
Abstract We tackle the thief orienteering problem (ThOP), an academic multi-component problem that combines two classical combinatorial problems, namely the Knapsack Problem and the Orienteering Problem. In the ThOP, a thief has a time limit to steal items that distributed in a given set of cities. While traveling, the thief collects items by storing them in their knapsack, which in turn reduces the travel speed. The thief has as the objective to maximize the total profit of the stolen items. In this article, we present an approach that combines swarm-intelligence with a randomized packing heuristic. Our solution approach outperforms existing works on almost all the 432 benchmarking instances, with significant improvements. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
abstractGer |
Abstract We tackle the thief orienteering problem (ThOP), an academic multi-component problem that combines two classical combinatorial problems, namely the Knapsack Problem and the Orienteering Problem. In the ThOP, a thief has a time limit to steal items that distributed in a given set of cities. While traveling, the thief collects items by storing them in their knapsack, which in turn reduces the travel speed. The thief has as the objective to maximize the total profit of the stolen items. In this article, we present an approach that combines swarm-intelligence with a randomized packing heuristic. Our solution approach outperforms existing works on almost all the 432 benchmarking instances, with significant improvements. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
abstract_unstemmed |
Abstract We tackle the thief orienteering problem (ThOP), an academic multi-component problem that combines two classical combinatorial problems, namely the Knapsack Problem and the Orienteering Problem. In the ThOP, a thief has a time limit to steal items that distributed in a given set of cities. While traveling, the thief collects items by storing them in their knapsack, which in turn reduces the travel speed. The thief has as the objective to maximize the total profit of the stolen items. In this article, we present an approach that combines swarm-intelligence with a randomized packing heuristic. Our solution approach outperforms existing works on almost all the 432 benchmarking instances, with significant improvements. © The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-WIW GBV_ILN_267 GBV_ILN_2018 |
container_issue |
8 |
title_short |
Efficiently solving the thief orienteering problem with a max–min ant colony optimization approach |
url |
https://doi.org/10.1007/s11590-021-01824-y |
remote_bool |
false |
author2 |
Wagner, Markus |
author2Str |
Wagner, Markus |
ppnlink |
527562920 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11590-021-01824-y |
up_date |
2024-07-04T01:45:54.008Z |
_version_ |
1803611069751492609 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2079680145</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506073137.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">221221s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11590-021-01824-y</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2079680145</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11590-021-01824-y-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chagas, Jonatas B. C.</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-7965-8419</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Efficiently solving the thief orienteering problem with a max–min ant colony optimization approach</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We tackle the thief orienteering problem (ThOP), an academic multi-component problem that combines two classical combinatorial problems, namely the Knapsack Problem and the Orienteering Problem. In the ThOP, a thief has a time limit to steal items that distributed in a given set of cities. While traveling, the thief collects items by storing them in their knapsack, which in turn reduces the travel speed. The thief has as the objective to maximize the total profit of the stolen items. In this article, we present an approach that combines swarm-intelligence with a randomized packing heuristic. Our solution approach outperforms existing works on almost all the 432 benchmarking instances, with significant improvements.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Ant colony optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multi-component problems</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Knapsack problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Orienteering problem</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wagner, Markus</subfield><subfield code="0">(orcid)0000-0002-3124-0061</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Optimization letters</subfield><subfield code="d">Springer Berlin Heidelberg, 2007</subfield><subfield code="g">16(2021), 8 vom: 08. Nov., Seite 2313-2331</subfield><subfield code="w">(DE-627)527562920</subfield><subfield code="w">(DE-600)2274663-8</subfield><subfield code="w">(DE-576)272713724</subfield><subfield code="x">1862-4472</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:16</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:8</subfield><subfield code="g">day:08</subfield><subfield code="g">month:11</subfield><subfield code="g">pages:2313-2331</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11590-021-01824-y</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_267</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2018</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">16</subfield><subfield code="j">2021</subfield><subfield code="e">8</subfield><subfield code="b">08</subfield><subfield code="c">11</subfield><subfield code="h">2313-2331</subfield></datafield></record></collection>
|
score |
7.4004374 |