On mixed local-nonlocal operators with $$(\alpha , \beta )$$-Neumann conditions
Abstract We consider some problems governed by the sum of a Laplacian and of a fractional Laplacian in presence of so–called $$(\alpha , \beta )$$-Neumann conditions in an essentially linear context. Indeed, first we show an existence result for asymptotically linear elliptic problems, and then we e...
Ausführliche Beschreibung
Autor*in: |
Mugnai, Dimitri [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer-Verlag Italia S.r.l., part of Springer Nature 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Rendiconti del Circolo Matematico di Palermo Series 2 - Springer International Publishing, 1884, 71(2022), 3 vom: 27. Mai, Seite 1035-1048 |
---|---|
Übergeordnetes Werk: |
volume:71 ; year:2022 ; number:3 ; day:27 ; month:05 ; pages:1035-1048 |
Links: |
---|
DOI / URN: |
10.1007/s12215-022-00755-6 |
---|
Katalog-ID: |
OLC2079822772 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2079822772 | ||
003 | DE-627 | ||
005 | 20230518155843.0 | ||
007 | tu | ||
008 | 230131s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s12215-022-00755-6 |2 doi | |
035 | |a (DE-627)OLC2079822772 | ||
035 | |a (DE-He213)s12215-022-00755-6-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Mugnai, Dimitri |e verfasserin |0 (orcid)0000-0001-8908-5220 |4 aut | |
245 | 1 | 0 | |a On mixed local-nonlocal operators with $$(\alpha , \beta )$$-Neumann conditions |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer-Verlag Italia S.r.l., part of Springer Nature 2022 | ||
520 | |a Abstract We consider some problems governed by the sum of a Laplacian and of a fractional Laplacian in presence of so–called $$(\alpha , \beta )$$-Neumann conditions in an essentially linear context. Indeed, first we show an existence result for asymptotically linear elliptic problems, and then we establish some qualitative properties for solutions of the associated homogeneous parabolic problem, extending to this setting related results in the local case. | ||
650 | 4 | |a Mixed local and fractional Laplacians | |
650 | 4 | |a ( | |
650 | 4 | |a )-Neumann boundary conditions | |
650 | 4 | |a Asymptotically linear problem | |
650 | 4 | |a Parabolic problem | |
700 | 1 | |a Proietti Lippi, Edoardo |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Rendiconti del Circolo Matematico di Palermo Series 2 |d Springer International Publishing, 1884 |g 71(2022), 3 vom: 27. Mai, Seite 1035-1048 |w (DE-627)129477761 |w (DE-600)203791-9 |w (DE-576)014858398 |x 0009-725X |7 nnns |
773 | 1 | 8 | |g volume:71 |g year:2022 |g number:3 |g day:27 |g month:05 |g pages:1035-1048 |
856 | 4 | 1 | |u https://doi.org/10.1007/s12215-022-00755-6 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_11 | ||
912 | |a GBV_ILN_22 | ||
912 | |a GBV_ILN_40 | ||
912 | |a GBV_ILN_171 | ||
951 | |a AR | ||
952 | |d 71 |j 2022 |e 3 |b 27 |c 05 |h 1035-1048 |
author_variant |
d m dm l e p le lep |
---|---|
matchkey_str |
article:0009725X:2022----::nielclolclprtrwtapaea |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s12215-022-00755-6 doi (DE-627)OLC2079822772 (DE-He213)s12215-022-00755-6-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Mugnai, Dimitri verfasserin (orcid)0000-0001-8908-5220 aut On mixed local-nonlocal operators with $$(\alpha , \beta )$$-Neumann conditions 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag Italia S.r.l., part of Springer Nature 2022 Abstract We consider some problems governed by the sum of a Laplacian and of a fractional Laplacian in presence of so–called $$(\alpha , \beta )$$-Neumann conditions in an essentially linear context. Indeed, first we show an existence result for asymptotically linear elliptic problems, and then we establish some qualitative properties for solutions of the associated homogeneous parabolic problem, extending to this setting related results in the local case. Mixed local and fractional Laplacians ( )-Neumann boundary conditions Asymptotically linear problem Parabolic problem Proietti Lippi, Edoardo aut Enthalten in Rendiconti del Circolo Matematico di Palermo Series 2 Springer International Publishing, 1884 71(2022), 3 vom: 27. Mai, Seite 1035-1048 (DE-627)129477761 (DE-600)203791-9 (DE-576)014858398 0009-725X nnns volume:71 year:2022 number:3 day:27 month:05 pages:1035-1048 https://doi.org/10.1007/s12215-022-00755-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_40 GBV_ILN_171 AR 71 2022 3 27 05 1035-1048 |
spelling |
10.1007/s12215-022-00755-6 doi (DE-627)OLC2079822772 (DE-He213)s12215-022-00755-6-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Mugnai, Dimitri verfasserin (orcid)0000-0001-8908-5220 aut On mixed local-nonlocal operators with $$(\alpha , \beta )$$-Neumann conditions 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag Italia S.r.l., part of Springer Nature 2022 Abstract We consider some problems governed by the sum of a Laplacian and of a fractional Laplacian in presence of so–called $$(\alpha , \beta )$$-Neumann conditions in an essentially linear context. Indeed, first we show an existence result for asymptotically linear elliptic problems, and then we establish some qualitative properties for solutions of the associated homogeneous parabolic problem, extending to this setting related results in the local case. Mixed local and fractional Laplacians ( )-Neumann boundary conditions Asymptotically linear problem Parabolic problem Proietti Lippi, Edoardo aut Enthalten in Rendiconti del Circolo Matematico di Palermo Series 2 Springer International Publishing, 1884 71(2022), 3 vom: 27. Mai, Seite 1035-1048 (DE-627)129477761 (DE-600)203791-9 (DE-576)014858398 0009-725X nnns volume:71 year:2022 number:3 day:27 month:05 pages:1035-1048 https://doi.org/10.1007/s12215-022-00755-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_40 GBV_ILN_171 AR 71 2022 3 27 05 1035-1048 |
allfields_unstemmed |
10.1007/s12215-022-00755-6 doi (DE-627)OLC2079822772 (DE-He213)s12215-022-00755-6-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Mugnai, Dimitri verfasserin (orcid)0000-0001-8908-5220 aut On mixed local-nonlocal operators with $$(\alpha , \beta )$$-Neumann conditions 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag Italia S.r.l., part of Springer Nature 2022 Abstract We consider some problems governed by the sum of a Laplacian and of a fractional Laplacian in presence of so–called $$(\alpha , \beta )$$-Neumann conditions in an essentially linear context. Indeed, first we show an existence result for asymptotically linear elliptic problems, and then we establish some qualitative properties for solutions of the associated homogeneous parabolic problem, extending to this setting related results in the local case. Mixed local and fractional Laplacians ( )-Neumann boundary conditions Asymptotically linear problem Parabolic problem Proietti Lippi, Edoardo aut Enthalten in Rendiconti del Circolo Matematico di Palermo Series 2 Springer International Publishing, 1884 71(2022), 3 vom: 27. Mai, Seite 1035-1048 (DE-627)129477761 (DE-600)203791-9 (DE-576)014858398 0009-725X nnns volume:71 year:2022 number:3 day:27 month:05 pages:1035-1048 https://doi.org/10.1007/s12215-022-00755-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_40 GBV_ILN_171 AR 71 2022 3 27 05 1035-1048 |
allfieldsGer |
10.1007/s12215-022-00755-6 doi (DE-627)OLC2079822772 (DE-He213)s12215-022-00755-6-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Mugnai, Dimitri verfasserin (orcid)0000-0001-8908-5220 aut On mixed local-nonlocal operators with $$(\alpha , \beta )$$-Neumann conditions 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag Italia S.r.l., part of Springer Nature 2022 Abstract We consider some problems governed by the sum of a Laplacian and of a fractional Laplacian in presence of so–called $$(\alpha , \beta )$$-Neumann conditions in an essentially linear context. Indeed, first we show an existence result for asymptotically linear elliptic problems, and then we establish some qualitative properties for solutions of the associated homogeneous parabolic problem, extending to this setting related results in the local case. Mixed local and fractional Laplacians ( )-Neumann boundary conditions Asymptotically linear problem Parabolic problem Proietti Lippi, Edoardo aut Enthalten in Rendiconti del Circolo Matematico di Palermo Series 2 Springer International Publishing, 1884 71(2022), 3 vom: 27. Mai, Seite 1035-1048 (DE-627)129477761 (DE-600)203791-9 (DE-576)014858398 0009-725X nnns volume:71 year:2022 number:3 day:27 month:05 pages:1035-1048 https://doi.org/10.1007/s12215-022-00755-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_40 GBV_ILN_171 AR 71 2022 3 27 05 1035-1048 |
allfieldsSound |
10.1007/s12215-022-00755-6 doi (DE-627)OLC2079822772 (DE-He213)s12215-022-00755-6-p DE-627 ger DE-627 rakwb eng 510 VZ 17,1 ssgn Mugnai, Dimitri verfasserin (orcid)0000-0001-8908-5220 aut On mixed local-nonlocal operators with $$(\alpha , \beta )$$-Neumann conditions 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer-Verlag Italia S.r.l., part of Springer Nature 2022 Abstract We consider some problems governed by the sum of a Laplacian and of a fractional Laplacian in presence of so–called $$(\alpha , \beta )$$-Neumann conditions in an essentially linear context. Indeed, first we show an existence result for asymptotically linear elliptic problems, and then we establish some qualitative properties for solutions of the associated homogeneous parabolic problem, extending to this setting related results in the local case. Mixed local and fractional Laplacians ( )-Neumann boundary conditions Asymptotically linear problem Parabolic problem Proietti Lippi, Edoardo aut Enthalten in Rendiconti del Circolo Matematico di Palermo Series 2 Springer International Publishing, 1884 71(2022), 3 vom: 27. Mai, Seite 1035-1048 (DE-627)129477761 (DE-600)203791-9 (DE-576)014858398 0009-725X nnns volume:71 year:2022 number:3 day:27 month:05 pages:1035-1048 https://doi.org/10.1007/s12215-022-00755-6 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_40 GBV_ILN_171 AR 71 2022 3 27 05 1035-1048 |
language |
English |
source |
Enthalten in Rendiconti del Circolo Matematico di Palermo Series 2 71(2022), 3 vom: 27. Mai, Seite 1035-1048 volume:71 year:2022 number:3 day:27 month:05 pages:1035-1048 |
sourceStr |
Enthalten in Rendiconti del Circolo Matematico di Palermo Series 2 71(2022), 3 vom: 27. Mai, Seite 1035-1048 volume:71 year:2022 number:3 day:27 month:05 pages:1035-1048 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Mixed local and fractional Laplacians ( )-Neumann boundary conditions Asymptotically linear problem Parabolic problem |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Rendiconti del Circolo Matematico di Palermo Series 2 |
authorswithroles_txt_mv |
Mugnai, Dimitri @@aut@@ Proietti Lippi, Edoardo @@aut@@ |
publishDateDaySort_date |
2022-05-27T00:00:00Z |
hierarchy_top_id |
129477761 |
dewey-sort |
3510 |
id |
OLC2079822772 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2079822772</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230518155843.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230131s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s12215-022-00755-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2079822772</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s12215-022-00755-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mugnai, Dimitri</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-8908-5220</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On mixed local-nonlocal operators with $$(\alpha , \beta )$$-Neumann conditions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag Italia S.r.l., part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We consider some problems governed by the sum of a Laplacian and of a fractional Laplacian in presence of so–called $$(\alpha , \beta )$$-Neumann conditions in an essentially linear context. Indeed, first we show an existence result for asymptotically linear elliptic problems, and then we establish some qualitative properties for solutions of the associated homogeneous parabolic problem, extending to this setting related results in the local case.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mixed local and fractional Laplacians</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">(</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">)-Neumann boundary conditions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymptotically linear problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parabolic problem</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Proietti Lippi, Edoardo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Rendiconti del Circolo Matematico di Palermo Series 2</subfield><subfield code="d">Springer International Publishing, 1884</subfield><subfield code="g">71(2022), 3 vom: 27. Mai, Seite 1035-1048</subfield><subfield code="w">(DE-627)129477761</subfield><subfield code="w">(DE-600)203791-9</subfield><subfield code="w">(DE-576)014858398</subfield><subfield code="x">0009-725X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:71</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">day:27</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:1035-1048</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s12215-022-00755-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">71</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="b">27</subfield><subfield code="c">05</subfield><subfield code="h">1035-1048</subfield></datafield></record></collection>
|
author |
Mugnai, Dimitri |
spellingShingle |
Mugnai, Dimitri ddc 510 ssgn 17,1 misc Mixed local and fractional Laplacians misc ( misc )-Neumann boundary conditions misc Asymptotically linear problem misc Parabolic problem On mixed local-nonlocal operators with $$(\alpha , \beta )$$-Neumann conditions |
authorStr |
Mugnai, Dimitri |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129477761 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0009-725X |
topic_title |
510 VZ 17,1 ssgn On mixed local-nonlocal operators with $$(\alpha , \beta )$$-Neumann conditions Mixed local and fractional Laplacians ( )-Neumann boundary conditions Asymptotically linear problem Parabolic problem |
topic |
ddc 510 ssgn 17,1 misc Mixed local and fractional Laplacians misc ( misc )-Neumann boundary conditions misc Asymptotically linear problem misc Parabolic problem |
topic_unstemmed |
ddc 510 ssgn 17,1 misc Mixed local and fractional Laplacians misc ( misc )-Neumann boundary conditions misc Asymptotically linear problem misc Parabolic problem |
topic_browse |
ddc 510 ssgn 17,1 misc Mixed local and fractional Laplacians misc ( misc )-Neumann boundary conditions misc Asymptotically linear problem misc Parabolic problem |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Rendiconti del Circolo Matematico di Palermo Series 2 |
hierarchy_parent_id |
129477761 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Rendiconti del Circolo Matematico di Palermo Series 2 |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129477761 (DE-600)203791-9 (DE-576)014858398 |
title |
On mixed local-nonlocal operators with $$(\alpha , \beta )$$-Neumann conditions |
ctrlnum |
(DE-627)OLC2079822772 (DE-He213)s12215-022-00755-6-p |
title_full |
On mixed local-nonlocal operators with $$(\alpha , \beta )$$-Neumann conditions |
author_sort |
Mugnai, Dimitri |
journal |
Rendiconti del Circolo Matematico di Palermo Series 2 |
journalStr |
Rendiconti del Circolo Matematico di Palermo Series 2 |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
1035 |
author_browse |
Mugnai, Dimitri Proietti Lippi, Edoardo |
container_volume |
71 |
class |
510 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Mugnai, Dimitri |
doi_str_mv |
10.1007/s12215-022-00755-6 |
normlink |
(ORCID)0000-0001-8908-5220 |
normlink_prefix_str_mv |
(orcid)0000-0001-8908-5220 |
dewey-full |
510 |
title_sort |
on mixed local-nonlocal operators with $$(\alpha , \beta )$$-neumann conditions |
title_auth |
On mixed local-nonlocal operators with $$(\alpha , \beta )$$-Neumann conditions |
abstract |
Abstract We consider some problems governed by the sum of a Laplacian and of a fractional Laplacian in presence of so–called $$(\alpha , \beta )$$-Neumann conditions in an essentially linear context. Indeed, first we show an existence result for asymptotically linear elliptic problems, and then we establish some qualitative properties for solutions of the associated homogeneous parabolic problem, extending to this setting related results in the local case. © The Author(s), under exclusive licence to Springer-Verlag Italia S.r.l., part of Springer Nature 2022 |
abstractGer |
Abstract We consider some problems governed by the sum of a Laplacian and of a fractional Laplacian in presence of so–called $$(\alpha , \beta )$$-Neumann conditions in an essentially linear context. Indeed, first we show an existence result for asymptotically linear elliptic problems, and then we establish some qualitative properties for solutions of the associated homogeneous parabolic problem, extending to this setting related results in the local case. © The Author(s), under exclusive licence to Springer-Verlag Italia S.r.l., part of Springer Nature 2022 |
abstract_unstemmed |
Abstract We consider some problems governed by the sum of a Laplacian and of a fractional Laplacian in presence of so–called $$(\alpha , \beta )$$-Neumann conditions in an essentially linear context. Indeed, first we show an existence result for asymptotically linear elliptic problems, and then we establish some qualitative properties for solutions of the associated homogeneous parabolic problem, extending to this setting related results in the local case. © The Author(s), under exclusive licence to Springer-Verlag Italia S.r.l., part of Springer Nature 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT GBV_ILN_11 GBV_ILN_22 GBV_ILN_40 GBV_ILN_171 |
container_issue |
3 |
title_short |
On mixed local-nonlocal operators with $$(\alpha , \beta )$$-Neumann conditions |
url |
https://doi.org/10.1007/s12215-022-00755-6 |
remote_bool |
false |
author2 |
Proietti Lippi, Edoardo |
author2Str |
Proietti Lippi, Edoardo |
ppnlink |
129477761 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s12215-022-00755-6 |
up_date |
2024-07-04T02:08:21.567Z |
_version_ |
1803612482770567168 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2079822772</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230518155843.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230131s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s12215-022-00755-6</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2079822772</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s12215-022-00755-6-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Mugnai, Dimitri</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0001-8908-5220</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">On mixed local-nonlocal operators with $$(\alpha , \beta )$$-Neumann conditions</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer-Verlag Italia S.r.l., part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract We consider some problems governed by the sum of a Laplacian and of a fractional Laplacian in presence of so–called $$(\alpha , \beta )$$-Neumann conditions in an essentially linear context. Indeed, first we show an existence result for asymptotically linear elliptic problems, and then we establish some qualitative properties for solutions of the associated homogeneous parabolic problem, extending to this setting related results in the local case.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mixed local and fractional Laplacians</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">(</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">)-Neumann boundary conditions</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Asymptotically linear problem</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Parabolic problem</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Proietti Lippi, Edoardo</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Rendiconti del Circolo Matematico di Palermo Series 2</subfield><subfield code="d">Springer International Publishing, 1884</subfield><subfield code="g">71(2022), 3 vom: 27. Mai, Seite 1035-1048</subfield><subfield code="w">(DE-627)129477761</subfield><subfield code="w">(DE-600)203791-9</subfield><subfield code="w">(DE-576)014858398</subfield><subfield code="x">0009-725X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:71</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:3</subfield><subfield code="g">day:27</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:1035-1048</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s12215-022-00755-6</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_11</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_22</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_40</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_171</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">71</subfield><subfield code="j">2022</subfield><subfield code="e">3</subfield><subfield code="b">27</subfield><subfield code="c">05</subfield><subfield code="h">1035-1048</subfield></datafield></record></collection>
|
score |
7.401143 |