Offloading Optimization and Time Allocation for Multiuser Wireless Energy Transfer Based Mobile Edge Computing System
Abstract This paper considers a wireless energy transfer based mobile edge computing system, where wireless devices can be charged by the radio-frequency signals broadcast by hybrid access point. With Mobile Edge Computing (MEC), wireless devices can execute their computation tasks locally or offloa...
Ausführliche Beschreibung
Autor*in: |
Li, Chunlin [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2020 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Springer Science+Business Media, LLC, part of Springer Nature 2020 |
---|
Übergeordnetes Werk: |
Enthalten in: Mobile networks and applications - Springer US, 1996, 27(2020), 5 vom: 09. Jan., Seite 1783-1791 |
---|---|
Übergeordnetes Werk: |
volume:27 ; year:2020 ; number:5 ; day:09 ; month:01 ; pages:1783-1791 |
Links: |
---|
DOI / URN: |
10.1007/s11036-019-01396-3 |
---|
Katalog-ID: |
OLC2079830090 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2079830090 | ||
003 | DE-627 | ||
005 | 20230506081005.0 | ||
007 | tu | ||
008 | 230131s2020 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11036-019-01396-3 |2 doi | |
035 | |a (DE-627)OLC2079830090 | ||
035 | |a (DE-He213)s11036-019-01396-3-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
100 | 1 | |a Li, Chunlin |e verfasserin |4 aut | |
245 | 1 | 0 | |a Offloading Optimization and Time Allocation for Multiuser Wireless Energy Transfer Based Mobile Edge Computing System |
264 | 1 | |c 2020 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Springer Science+Business Media, LLC, part of Springer Nature 2020 | ||
520 | |a Abstract This paper considers a wireless energy transfer based mobile edge computing system, where wireless devices can be charged by the radio-frequency signals broadcast by hybrid access point. With Mobile Edge Computing (MEC), wireless devices can execute their computation tasks locally or offload them to the MEC server by time division multiple access protocol. Based on this system, this paper studies the problem of system energy efficiency maximization by joint optimization of computing time allocation, energy consumption, capacity of local computing and task offloading. A Tabu search based system energy efficiency maximization algorithm is proposed for solving the optimization problems. Finally, the performance of the proposed algorithm is valued by extensive simulation experiments. Simulation results verify the effectiveness of the proposed algorithm. | ||
650 | 4 | |a Offloading optimization | |
650 | 4 | |a Time allocation | |
650 | 4 | |a Task offloading | |
650 | 4 | |a Mobile edge computing | |
700 | 1 | |a Song, Mingyang |4 aut | |
700 | 1 | |a Zhang, Lei |4 aut | |
700 | 1 | |a Chen, Weining |4 aut | |
700 | 1 | |a Luo, Youlong |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Mobile networks and applications |d Springer US, 1996 |g 27(2020), 5 vom: 09. Jan., Seite 1783-1791 |w (DE-627)215279522 |w (DE-600)1342049-5 |w (DE-576)063244756 |x 1383-469X |7 nnns |
773 | 1 | 8 | |g volume:27 |g year:2020 |g number:5 |g day:09 |g month:01 |g pages:1783-1791 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11036-019-01396-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
951 | |a AR | ||
952 | |d 27 |j 2020 |e 5 |b 09 |c 01 |h 1783-1791 |
author_variant |
c l cl m s ms l z lz w c wc y l yl |
---|---|
matchkey_str |
article:1383469X:2020----::flaigpiiainntmalctofrutuewrlseegtaseb |
hierarchy_sort_str |
2020 |
publishDate |
2020 |
allfields |
10.1007/s11036-019-01396-3 doi (DE-627)OLC2079830090 (DE-He213)s11036-019-01396-3-p DE-627 ger DE-627 rakwb eng 004 VZ Li, Chunlin verfasserin aut Offloading Optimization and Time Allocation for Multiuser Wireless Energy Transfer Based Mobile Edge Computing System 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract This paper considers a wireless energy transfer based mobile edge computing system, where wireless devices can be charged by the radio-frequency signals broadcast by hybrid access point. With Mobile Edge Computing (MEC), wireless devices can execute their computation tasks locally or offload them to the MEC server by time division multiple access protocol. Based on this system, this paper studies the problem of system energy efficiency maximization by joint optimization of computing time allocation, energy consumption, capacity of local computing and task offloading. A Tabu search based system energy efficiency maximization algorithm is proposed for solving the optimization problems. Finally, the performance of the proposed algorithm is valued by extensive simulation experiments. Simulation results verify the effectiveness of the proposed algorithm. Offloading optimization Time allocation Task offloading Mobile edge computing Song, Mingyang aut Zhang, Lei aut Chen, Weining aut Luo, Youlong aut Enthalten in Mobile networks and applications Springer US, 1996 27(2020), 5 vom: 09. Jan., Seite 1783-1791 (DE-627)215279522 (DE-600)1342049-5 (DE-576)063244756 1383-469X nnns volume:27 year:2020 number:5 day:09 month:01 pages:1783-1791 https://doi.org/10.1007/s11036-019-01396-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT AR 27 2020 5 09 01 1783-1791 |
spelling |
10.1007/s11036-019-01396-3 doi (DE-627)OLC2079830090 (DE-He213)s11036-019-01396-3-p DE-627 ger DE-627 rakwb eng 004 VZ Li, Chunlin verfasserin aut Offloading Optimization and Time Allocation for Multiuser Wireless Energy Transfer Based Mobile Edge Computing System 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract This paper considers a wireless energy transfer based mobile edge computing system, where wireless devices can be charged by the radio-frequency signals broadcast by hybrid access point. With Mobile Edge Computing (MEC), wireless devices can execute their computation tasks locally or offload them to the MEC server by time division multiple access protocol. Based on this system, this paper studies the problem of system energy efficiency maximization by joint optimization of computing time allocation, energy consumption, capacity of local computing and task offloading. A Tabu search based system energy efficiency maximization algorithm is proposed for solving the optimization problems. Finally, the performance of the proposed algorithm is valued by extensive simulation experiments. Simulation results verify the effectiveness of the proposed algorithm. Offloading optimization Time allocation Task offloading Mobile edge computing Song, Mingyang aut Zhang, Lei aut Chen, Weining aut Luo, Youlong aut Enthalten in Mobile networks and applications Springer US, 1996 27(2020), 5 vom: 09. Jan., Seite 1783-1791 (DE-627)215279522 (DE-600)1342049-5 (DE-576)063244756 1383-469X nnns volume:27 year:2020 number:5 day:09 month:01 pages:1783-1791 https://doi.org/10.1007/s11036-019-01396-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT AR 27 2020 5 09 01 1783-1791 |
allfields_unstemmed |
10.1007/s11036-019-01396-3 doi (DE-627)OLC2079830090 (DE-He213)s11036-019-01396-3-p DE-627 ger DE-627 rakwb eng 004 VZ Li, Chunlin verfasserin aut Offloading Optimization and Time Allocation for Multiuser Wireless Energy Transfer Based Mobile Edge Computing System 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract This paper considers a wireless energy transfer based mobile edge computing system, where wireless devices can be charged by the radio-frequency signals broadcast by hybrid access point. With Mobile Edge Computing (MEC), wireless devices can execute their computation tasks locally or offload them to the MEC server by time division multiple access protocol. Based on this system, this paper studies the problem of system energy efficiency maximization by joint optimization of computing time allocation, energy consumption, capacity of local computing and task offloading. A Tabu search based system energy efficiency maximization algorithm is proposed for solving the optimization problems. Finally, the performance of the proposed algorithm is valued by extensive simulation experiments. Simulation results verify the effectiveness of the proposed algorithm. Offloading optimization Time allocation Task offloading Mobile edge computing Song, Mingyang aut Zhang, Lei aut Chen, Weining aut Luo, Youlong aut Enthalten in Mobile networks and applications Springer US, 1996 27(2020), 5 vom: 09. Jan., Seite 1783-1791 (DE-627)215279522 (DE-600)1342049-5 (DE-576)063244756 1383-469X nnns volume:27 year:2020 number:5 day:09 month:01 pages:1783-1791 https://doi.org/10.1007/s11036-019-01396-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT AR 27 2020 5 09 01 1783-1791 |
allfieldsGer |
10.1007/s11036-019-01396-3 doi (DE-627)OLC2079830090 (DE-He213)s11036-019-01396-3-p DE-627 ger DE-627 rakwb eng 004 VZ Li, Chunlin verfasserin aut Offloading Optimization and Time Allocation for Multiuser Wireless Energy Transfer Based Mobile Edge Computing System 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract This paper considers a wireless energy transfer based mobile edge computing system, where wireless devices can be charged by the radio-frequency signals broadcast by hybrid access point. With Mobile Edge Computing (MEC), wireless devices can execute their computation tasks locally or offload them to the MEC server by time division multiple access protocol. Based on this system, this paper studies the problem of system energy efficiency maximization by joint optimization of computing time allocation, energy consumption, capacity of local computing and task offloading. A Tabu search based system energy efficiency maximization algorithm is proposed for solving the optimization problems. Finally, the performance of the proposed algorithm is valued by extensive simulation experiments. Simulation results verify the effectiveness of the proposed algorithm. Offloading optimization Time allocation Task offloading Mobile edge computing Song, Mingyang aut Zhang, Lei aut Chen, Weining aut Luo, Youlong aut Enthalten in Mobile networks and applications Springer US, 1996 27(2020), 5 vom: 09. Jan., Seite 1783-1791 (DE-627)215279522 (DE-600)1342049-5 (DE-576)063244756 1383-469X nnns volume:27 year:2020 number:5 day:09 month:01 pages:1783-1791 https://doi.org/10.1007/s11036-019-01396-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT AR 27 2020 5 09 01 1783-1791 |
allfieldsSound |
10.1007/s11036-019-01396-3 doi (DE-627)OLC2079830090 (DE-He213)s11036-019-01396-3-p DE-627 ger DE-627 rakwb eng 004 VZ Li, Chunlin verfasserin aut Offloading Optimization and Time Allocation for Multiuser Wireless Energy Transfer Based Mobile Edge Computing System 2020 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Springer Science+Business Media, LLC, part of Springer Nature 2020 Abstract This paper considers a wireless energy transfer based mobile edge computing system, where wireless devices can be charged by the radio-frequency signals broadcast by hybrid access point. With Mobile Edge Computing (MEC), wireless devices can execute their computation tasks locally or offload them to the MEC server by time division multiple access protocol. Based on this system, this paper studies the problem of system energy efficiency maximization by joint optimization of computing time allocation, energy consumption, capacity of local computing and task offloading. A Tabu search based system energy efficiency maximization algorithm is proposed for solving the optimization problems. Finally, the performance of the proposed algorithm is valued by extensive simulation experiments. Simulation results verify the effectiveness of the proposed algorithm. Offloading optimization Time allocation Task offloading Mobile edge computing Song, Mingyang aut Zhang, Lei aut Chen, Weining aut Luo, Youlong aut Enthalten in Mobile networks and applications Springer US, 1996 27(2020), 5 vom: 09. Jan., Seite 1783-1791 (DE-627)215279522 (DE-600)1342049-5 (DE-576)063244756 1383-469X nnns volume:27 year:2020 number:5 day:09 month:01 pages:1783-1791 https://doi.org/10.1007/s11036-019-01396-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT AR 27 2020 5 09 01 1783-1791 |
language |
English |
source |
Enthalten in Mobile networks and applications 27(2020), 5 vom: 09. Jan., Seite 1783-1791 volume:27 year:2020 number:5 day:09 month:01 pages:1783-1791 |
sourceStr |
Enthalten in Mobile networks and applications 27(2020), 5 vom: 09. Jan., Seite 1783-1791 volume:27 year:2020 number:5 day:09 month:01 pages:1783-1791 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Offloading optimization Time allocation Task offloading Mobile edge computing |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Mobile networks and applications |
authorswithroles_txt_mv |
Li, Chunlin @@aut@@ Song, Mingyang @@aut@@ Zhang, Lei @@aut@@ Chen, Weining @@aut@@ Luo, Youlong @@aut@@ |
publishDateDaySort_date |
2020-01-09T00:00:00Z |
hierarchy_top_id |
215279522 |
dewey-sort |
14 |
id |
OLC2079830090 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2079830090</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506081005.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230131s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11036-019-01396-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2079830090</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11036-019-01396-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Chunlin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Offloading Optimization and Time Allocation for Multiuser Wireless Energy Transfer Based Mobile Edge Computing System</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper considers a wireless energy transfer based mobile edge computing system, where wireless devices can be charged by the radio-frequency signals broadcast by hybrid access point. With Mobile Edge Computing (MEC), wireless devices can execute their computation tasks locally or offload them to the MEC server by time division multiple access protocol. Based on this system, this paper studies the problem of system energy efficiency maximization by joint optimization of computing time allocation, energy consumption, capacity of local computing and task offloading. A Tabu search based system energy efficiency maximization algorithm is proposed for solving the optimization problems. Finally, the performance of the proposed algorithm is valued by extensive simulation experiments. Simulation results verify the effectiveness of the proposed algorithm.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Offloading optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time allocation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Task offloading</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mobile edge computing</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Mingyang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Lei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Weining</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luo, Youlong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mobile networks and applications</subfield><subfield code="d">Springer US, 1996</subfield><subfield code="g">27(2020), 5 vom: 09. Jan., Seite 1783-1791</subfield><subfield code="w">(DE-627)215279522</subfield><subfield code="w">(DE-600)1342049-5</subfield><subfield code="w">(DE-576)063244756</subfield><subfield code="x">1383-469X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:27</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:5</subfield><subfield code="g">day:09</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:1783-1791</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11036-019-01396-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">27</subfield><subfield code="j">2020</subfield><subfield code="e">5</subfield><subfield code="b">09</subfield><subfield code="c">01</subfield><subfield code="h">1783-1791</subfield></datafield></record></collection>
|
author |
Li, Chunlin |
spellingShingle |
Li, Chunlin ddc 004 misc Offloading optimization misc Time allocation misc Task offloading misc Mobile edge computing Offloading Optimization and Time Allocation for Multiuser Wireless Energy Transfer Based Mobile Edge Computing System |
authorStr |
Li, Chunlin |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)215279522 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1383-469X |
topic_title |
004 VZ Offloading Optimization and Time Allocation for Multiuser Wireless Energy Transfer Based Mobile Edge Computing System Offloading optimization Time allocation Task offloading Mobile edge computing |
topic |
ddc 004 misc Offloading optimization misc Time allocation misc Task offloading misc Mobile edge computing |
topic_unstemmed |
ddc 004 misc Offloading optimization misc Time allocation misc Task offloading misc Mobile edge computing |
topic_browse |
ddc 004 misc Offloading optimization misc Time allocation misc Task offloading misc Mobile edge computing |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Mobile networks and applications |
hierarchy_parent_id |
215279522 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Mobile networks and applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)215279522 (DE-600)1342049-5 (DE-576)063244756 |
title |
Offloading Optimization and Time Allocation for Multiuser Wireless Energy Transfer Based Mobile Edge Computing System |
ctrlnum |
(DE-627)OLC2079830090 (DE-He213)s11036-019-01396-3-p |
title_full |
Offloading Optimization and Time Allocation for Multiuser Wireless Energy Transfer Based Mobile Edge Computing System |
author_sort |
Li, Chunlin |
journal |
Mobile networks and applications |
journalStr |
Mobile networks and applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2020 |
contenttype_str_mv |
txt |
container_start_page |
1783 |
author_browse |
Li, Chunlin Song, Mingyang Zhang, Lei Chen, Weining Luo, Youlong |
container_volume |
27 |
class |
004 VZ |
format_se |
Aufsätze |
author-letter |
Li, Chunlin |
doi_str_mv |
10.1007/s11036-019-01396-3 |
dewey-full |
004 |
title_sort |
offloading optimization and time allocation for multiuser wireless energy transfer based mobile edge computing system |
title_auth |
Offloading Optimization and Time Allocation for Multiuser Wireless Energy Transfer Based Mobile Edge Computing System |
abstract |
Abstract This paper considers a wireless energy transfer based mobile edge computing system, where wireless devices can be charged by the radio-frequency signals broadcast by hybrid access point. With Mobile Edge Computing (MEC), wireless devices can execute their computation tasks locally or offload them to the MEC server by time division multiple access protocol. Based on this system, this paper studies the problem of system energy efficiency maximization by joint optimization of computing time allocation, energy consumption, capacity of local computing and task offloading. A Tabu search based system energy efficiency maximization algorithm is proposed for solving the optimization problems. Finally, the performance of the proposed algorithm is valued by extensive simulation experiments. Simulation results verify the effectiveness of the proposed algorithm. © Springer Science+Business Media, LLC, part of Springer Nature 2020 |
abstractGer |
Abstract This paper considers a wireless energy transfer based mobile edge computing system, where wireless devices can be charged by the radio-frequency signals broadcast by hybrid access point. With Mobile Edge Computing (MEC), wireless devices can execute their computation tasks locally or offload them to the MEC server by time division multiple access protocol. Based on this system, this paper studies the problem of system energy efficiency maximization by joint optimization of computing time allocation, energy consumption, capacity of local computing and task offloading. A Tabu search based system energy efficiency maximization algorithm is proposed for solving the optimization problems. Finally, the performance of the proposed algorithm is valued by extensive simulation experiments. Simulation results verify the effectiveness of the proposed algorithm. © Springer Science+Business Media, LLC, part of Springer Nature 2020 |
abstract_unstemmed |
Abstract This paper considers a wireless energy transfer based mobile edge computing system, where wireless devices can be charged by the radio-frequency signals broadcast by hybrid access point. With Mobile Edge Computing (MEC), wireless devices can execute their computation tasks locally or offload them to the MEC server by time division multiple access protocol. Based on this system, this paper studies the problem of system energy efficiency maximization by joint optimization of computing time allocation, energy consumption, capacity of local computing and task offloading. A Tabu search based system energy efficiency maximization algorithm is proposed for solving the optimization problems. Finally, the performance of the proposed algorithm is valued by extensive simulation experiments. Simulation results verify the effectiveness of the proposed algorithm. © Springer Science+Business Media, LLC, part of Springer Nature 2020 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT |
container_issue |
5 |
title_short |
Offloading Optimization and Time Allocation for Multiuser Wireless Energy Transfer Based Mobile Edge Computing System |
url |
https://doi.org/10.1007/s11036-019-01396-3 |
remote_bool |
false |
author2 |
Song, Mingyang Zhang, Lei Chen, Weining Luo, Youlong |
author2Str |
Song, Mingyang Zhang, Lei Chen, Weining Luo, Youlong |
ppnlink |
215279522 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11036-019-01396-3 |
up_date |
2024-07-04T02:09:43.518Z |
_version_ |
1803612568701370368 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2079830090</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506081005.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230131s2020 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11036-019-01396-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2079830090</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11036-019-01396-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Chunlin</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Offloading Optimization and Time Allocation for Multiuser Wireless Energy Transfer Based Mobile Edge Computing System</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2020</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Springer Science+Business Media, LLC, part of Springer Nature 2020</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract This paper considers a wireless energy transfer based mobile edge computing system, where wireless devices can be charged by the radio-frequency signals broadcast by hybrid access point. With Mobile Edge Computing (MEC), wireless devices can execute their computation tasks locally or offload them to the MEC server by time division multiple access protocol. Based on this system, this paper studies the problem of system energy efficiency maximization by joint optimization of computing time allocation, energy consumption, capacity of local computing and task offloading. A Tabu search based system energy efficiency maximization algorithm is proposed for solving the optimization problems. Finally, the performance of the proposed algorithm is valued by extensive simulation experiments. Simulation results verify the effectiveness of the proposed algorithm.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Offloading optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Time allocation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Task offloading</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mobile edge computing</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Song, Mingyang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Lei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Chen, Weining</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Luo, Youlong</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Mobile networks and applications</subfield><subfield code="d">Springer US, 1996</subfield><subfield code="g">27(2020), 5 vom: 09. Jan., Seite 1783-1791</subfield><subfield code="w">(DE-627)215279522</subfield><subfield code="w">(DE-600)1342049-5</subfield><subfield code="w">(DE-576)063244756</subfield><subfield code="x">1383-469X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:27</subfield><subfield code="g">year:2020</subfield><subfield code="g">number:5</subfield><subfield code="g">day:09</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:1783-1791</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11036-019-01396-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">27</subfield><subfield code="j">2020</subfield><subfield code="e">5</subfield><subfield code="b">09</subfield><subfield code="c">01</subfield><subfield code="h">1783-1791</subfield></datafield></record></collection>
|
score |
7.401745 |