Johnson graph codes
Abstract Array codes are the preferred codes for distributed storage, such that different rows in an array are stored at different nodes. Layered codes use a sparse format for stored arrays with a single parity check per column and no other parity checks. Remarkably, the simple structure of layered...
Ausführliche Beschreibung
Autor*in: |
Duursma, Iwan [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Designs, codes and cryptography - Springer US, 1991, 90(2022), 12 vom: 28. Feb., Seite 2923-2941 |
---|---|
Übergeordnetes Werk: |
volume:90 ; year:2022 ; number:12 ; day:28 ; month:02 ; pages:2923-2941 |
Links: |
---|
DOI / URN: |
10.1007/s10623-021-01003-1 |
---|
Katalog-ID: |
OLC2079959166 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2079959166 | ||
003 | DE-627 | ||
005 | 20230506085307.0 | ||
007 | tu | ||
008 | 230131s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10623-021-01003-1 |2 doi | |
035 | |a (DE-627)OLC2079959166 | ||
035 | |a (DE-He213)s10623-021-01003-1-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
084 | |a 17,1 |2 ssgn | ||
100 | 1 | |a Duursma, Iwan |e verfasserin |0 (orcid)0000-0002-2436-3944 |4 aut | |
245 | 1 | 0 | |a Johnson graph codes |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 | ||
520 | |a Abstract Array codes are the preferred codes for distributed storage, such that different rows in an array are stored at different nodes. Layered codes use a sparse format for stored arrays with a single parity check per column and no other parity checks. Remarkably, the simple structure of layered codes is optimal when data is collected from all but one node. Codes that collect data from fewer nodes include improved layered codes, determinant codes, cascade codes and moulin codes. As our main result we show that the concatenation of layered codes with suitable outer codes achieves the performance of cascade and moulin codes which is conjectured to be optimal for general regenerating codes. The codes that we use as outer codes are in a new class of codes that we call Johnson graph codes. The codes have properties similar to those of Reed–Muller codes. In both cases the topological structure of the set of coordinates can be used to identify information sets and codewords of small weight. | ||
650 | 4 | |a Algebraic coding theory | |
650 | 4 | |a Codes for distributed storage | |
650 | 4 | |a Regenerating codes | |
650 | 4 | |a Johnson graph | |
650 | 4 | |a Multilinear algebra | |
650 | 4 | |a Determinants | |
700 | 1 | |a Li, Xiao |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Designs, codes and cryptography |d Springer US, 1991 |g 90(2022), 12 vom: 28. Feb., Seite 2923-2941 |w (DE-627)130994197 |w (DE-600)1082042-5 |w (DE-576)029154375 |x 0925-1022 |7 nnns |
773 | 1 | 8 | |g volume:90 |g year:2022 |g number:12 |g day:28 |g month:02 |g pages:2923-2941 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10623-021-01003-1 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-MAT | ||
951 | |a AR | ||
952 | |d 90 |j 2022 |e 12 |b 28 |c 02 |h 2923-2941 |
author_variant |
i d id x l xl |
---|---|
matchkey_str |
article:09251022:2022----::onogah |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s10623-021-01003-1 doi (DE-627)OLC2079959166 (DE-He213)s10623-021-01003-1-p DE-627 ger DE-627 rakwb eng 004 VZ 17,1 ssgn Duursma, Iwan verfasserin (orcid)0000-0002-2436-3944 aut Johnson graph codes 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract Array codes are the preferred codes for distributed storage, such that different rows in an array are stored at different nodes. Layered codes use a sparse format for stored arrays with a single parity check per column and no other parity checks. Remarkably, the simple structure of layered codes is optimal when data is collected from all but one node. Codes that collect data from fewer nodes include improved layered codes, determinant codes, cascade codes and moulin codes. As our main result we show that the concatenation of layered codes with suitable outer codes achieves the performance of cascade and moulin codes which is conjectured to be optimal for general regenerating codes. The codes that we use as outer codes are in a new class of codes that we call Johnson graph codes. The codes have properties similar to those of Reed–Muller codes. In both cases the topological structure of the set of coordinates can be used to identify information sets and codewords of small weight. Algebraic coding theory Codes for distributed storage Regenerating codes Johnson graph Multilinear algebra Determinants Li, Xiao aut Enthalten in Designs, codes and cryptography Springer US, 1991 90(2022), 12 vom: 28. Feb., Seite 2923-2941 (DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 0925-1022 nnns volume:90 year:2022 number:12 day:28 month:02 pages:2923-2941 https://doi.org/10.1007/s10623-021-01003-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 90 2022 12 28 02 2923-2941 |
spelling |
10.1007/s10623-021-01003-1 doi (DE-627)OLC2079959166 (DE-He213)s10623-021-01003-1-p DE-627 ger DE-627 rakwb eng 004 VZ 17,1 ssgn Duursma, Iwan verfasserin (orcid)0000-0002-2436-3944 aut Johnson graph codes 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract Array codes are the preferred codes for distributed storage, such that different rows in an array are stored at different nodes. Layered codes use a sparse format for stored arrays with a single parity check per column and no other parity checks. Remarkably, the simple structure of layered codes is optimal when data is collected from all but one node. Codes that collect data from fewer nodes include improved layered codes, determinant codes, cascade codes and moulin codes. As our main result we show that the concatenation of layered codes with suitable outer codes achieves the performance of cascade and moulin codes which is conjectured to be optimal for general regenerating codes. The codes that we use as outer codes are in a new class of codes that we call Johnson graph codes. The codes have properties similar to those of Reed–Muller codes. In both cases the topological structure of the set of coordinates can be used to identify information sets and codewords of small weight. Algebraic coding theory Codes for distributed storage Regenerating codes Johnson graph Multilinear algebra Determinants Li, Xiao aut Enthalten in Designs, codes and cryptography Springer US, 1991 90(2022), 12 vom: 28. Feb., Seite 2923-2941 (DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 0925-1022 nnns volume:90 year:2022 number:12 day:28 month:02 pages:2923-2941 https://doi.org/10.1007/s10623-021-01003-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 90 2022 12 28 02 2923-2941 |
allfields_unstemmed |
10.1007/s10623-021-01003-1 doi (DE-627)OLC2079959166 (DE-He213)s10623-021-01003-1-p DE-627 ger DE-627 rakwb eng 004 VZ 17,1 ssgn Duursma, Iwan verfasserin (orcid)0000-0002-2436-3944 aut Johnson graph codes 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract Array codes are the preferred codes for distributed storage, such that different rows in an array are stored at different nodes. Layered codes use a sparse format for stored arrays with a single parity check per column and no other parity checks. Remarkably, the simple structure of layered codes is optimal when data is collected from all but one node. Codes that collect data from fewer nodes include improved layered codes, determinant codes, cascade codes and moulin codes. As our main result we show that the concatenation of layered codes with suitable outer codes achieves the performance of cascade and moulin codes which is conjectured to be optimal for general regenerating codes. The codes that we use as outer codes are in a new class of codes that we call Johnson graph codes. The codes have properties similar to those of Reed–Muller codes. In both cases the topological structure of the set of coordinates can be used to identify information sets and codewords of small weight. Algebraic coding theory Codes for distributed storage Regenerating codes Johnson graph Multilinear algebra Determinants Li, Xiao aut Enthalten in Designs, codes and cryptography Springer US, 1991 90(2022), 12 vom: 28. Feb., Seite 2923-2941 (DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 0925-1022 nnns volume:90 year:2022 number:12 day:28 month:02 pages:2923-2941 https://doi.org/10.1007/s10623-021-01003-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 90 2022 12 28 02 2923-2941 |
allfieldsGer |
10.1007/s10623-021-01003-1 doi (DE-627)OLC2079959166 (DE-He213)s10623-021-01003-1-p DE-627 ger DE-627 rakwb eng 004 VZ 17,1 ssgn Duursma, Iwan verfasserin (orcid)0000-0002-2436-3944 aut Johnson graph codes 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract Array codes are the preferred codes for distributed storage, such that different rows in an array are stored at different nodes. Layered codes use a sparse format for stored arrays with a single parity check per column and no other parity checks. Remarkably, the simple structure of layered codes is optimal when data is collected from all but one node. Codes that collect data from fewer nodes include improved layered codes, determinant codes, cascade codes and moulin codes. As our main result we show that the concatenation of layered codes with suitable outer codes achieves the performance of cascade and moulin codes which is conjectured to be optimal for general regenerating codes. The codes that we use as outer codes are in a new class of codes that we call Johnson graph codes. The codes have properties similar to those of Reed–Muller codes. In both cases the topological structure of the set of coordinates can be used to identify information sets and codewords of small weight. Algebraic coding theory Codes for distributed storage Regenerating codes Johnson graph Multilinear algebra Determinants Li, Xiao aut Enthalten in Designs, codes and cryptography Springer US, 1991 90(2022), 12 vom: 28. Feb., Seite 2923-2941 (DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 0925-1022 nnns volume:90 year:2022 number:12 day:28 month:02 pages:2923-2941 https://doi.org/10.1007/s10623-021-01003-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 90 2022 12 28 02 2923-2941 |
allfieldsSound |
10.1007/s10623-021-01003-1 doi (DE-627)OLC2079959166 (DE-He213)s10623-021-01003-1-p DE-627 ger DE-627 rakwb eng 004 VZ 17,1 ssgn Duursma, Iwan verfasserin (orcid)0000-0002-2436-3944 aut Johnson graph codes 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract Array codes are the preferred codes for distributed storage, such that different rows in an array are stored at different nodes. Layered codes use a sparse format for stored arrays with a single parity check per column and no other parity checks. Remarkably, the simple structure of layered codes is optimal when data is collected from all but one node. Codes that collect data from fewer nodes include improved layered codes, determinant codes, cascade codes and moulin codes. As our main result we show that the concatenation of layered codes with suitable outer codes achieves the performance of cascade and moulin codes which is conjectured to be optimal for general regenerating codes. The codes that we use as outer codes are in a new class of codes that we call Johnson graph codes. The codes have properties similar to those of Reed–Muller codes. In both cases the topological structure of the set of coordinates can be used to identify information sets and codewords of small weight. Algebraic coding theory Codes for distributed storage Regenerating codes Johnson graph Multilinear algebra Determinants Li, Xiao aut Enthalten in Designs, codes and cryptography Springer US, 1991 90(2022), 12 vom: 28. Feb., Seite 2923-2941 (DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 0925-1022 nnns volume:90 year:2022 number:12 day:28 month:02 pages:2923-2941 https://doi.org/10.1007/s10623-021-01003-1 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT AR 90 2022 12 28 02 2923-2941 |
language |
English |
source |
Enthalten in Designs, codes and cryptography 90(2022), 12 vom: 28. Feb., Seite 2923-2941 volume:90 year:2022 number:12 day:28 month:02 pages:2923-2941 |
sourceStr |
Enthalten in Designs, codes and cryptography 90(2022), 12 vom: 28. Feb., Seite 2923-2941 volume:90 year:2022 number:12 day:28 month:02 pages:2923-2941 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Algebraic coding theory Codes for distributed storage Regenerating codes Johnson graph Multilinear algebra Determinants |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Designs, codes and cryptography |
authorswithroles_txt_mv |
Duursma, Iwan @@aut@@ Li, Xiao @@aut@@ |
publishDateDaySort_date |
2022-02-28T00:00:00Z |
hierarchy_top_id |
130994197 |
dewey-sort |
14 |
id |
OLC2079959166 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2079959166</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506085307.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230131s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10623-021-01003-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2079959166</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10623-021-01003-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Duursma, Iwan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2436-3944</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Johnson graph codes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Array codes are the preferred codes for distributed storage, such that different rows in an array are stored at different nodes. Layered codes use a sparse format for stored arrays with a single parity check per column and no other parity checks. Remarkably, the simple structure of layered codes is optimal when data is collected from all but one node. Codes that collect data from fewer nodes include improved layered codes, determinant codes, cascade codes and moulin codes. As our main result we show that the concatenation of layered codes with suitable outer codes achieves the performance of cascade and moulin codes which is conjectured to be optimal for general regenerating codes. The codes that we use as outer codes are in a new class of codes that we call Johnson graph codes. The codes have properties similar to those of Reed–Muller codes. In both cases the topological structure of the set of coordinates can be used to identify information sets and codewords of small weight.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic coding theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Codes for distributed storage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Regenerating codes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Johnson graph</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multilinear algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Determinants</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xiao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Designs, codes and cryptography</subfield><subfield code="d">Springer US, 1991</subfield><subfield code="g">90(2022), 12 vom: 28. Feb., Seite 2923-2941</subfield><subfield code="w">(DE-627)130994197</subfield><subfield code="w">(DE-600)1082042-5</subfield><subfield code="w">(DE-576)029154375</subfield><subfield code="x">0925-1022</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:90</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:12</subfield><subfield code="g">day:28</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:2923-2941</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10623-021-01003-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">90</subfield><subfield code="j">2022</subfield><subfield code="e">12</subfield><subfield code="b">28</subfield><subfield code="c">02</subfield><subfield code="h">2923-2941</subfield></datafield></record></collection>
|
author |
Duursma, Iwan |
spellingShingle |
Duursma, Iwan ddc 004 ssgn 17,1 misc Algebraic coding theory misc Codes for distributed storage misc Regenerating codes misc Johnson graph misc Multilinear algebra misc Determinants Johnson graph codes |
authorStr |
Duursma, Iwan |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130994197 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0925-1022 |
topic_title |
004 VZ 17,1 ssgn Johnson graph codes Algebraic coding theory Codes for distributed storage Regenerating codes Johnson graph Multilinear algebra Determinants |
topic |
ddc 004 ssgn 17,1 misc Algebraic coding theory misc Codes for distributed storage misc Regenerating codes misc Johnson graph misc Multilinear algebra misc Determinants |
topic_unstemmed |
ddc 004 ssgn 17,1 misc Algebraic coding theory misc Codes for distributed storage misc Regenerating codes misc Johnson graph misc Multilinear algebra misc Determinants |
topic_browse |
ddc 004 ssgn 17,1 misc Algebraic coding theory misc Codes for distributed storage misc Regenerating codes misc Johnson graph misc Multilinear algebra misc Determinants |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Designs, codes and cryptography |
hierarchy_parent_id |
130994197 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Designs, codes and cryptography |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130994197 (DE-600)1082042-5 (DE-576)029154375 |
title |
Johnson graph codes |
ctrlnum |
(DE-627)OLC2079959166 (DE-He213)s10623-021-01003-1-p |
title_full |
Johnson graph codes |
author_sort |
Duursma, Iwan |
journal |
Designs, codes and cryptography |
journalStr |
Designs, codes and cryptography |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
2923 |
author_browse |
Duursma, Iwan Li, Xiao |
container_volume |
90 |
class |
004 VZ 17,1 ssgn |
format_se |
Aufsätze |
author-letter |
Duursma, Iwan |
doi_str_mv |
10.1007/s10623-021-01003-1 |
normlink |
(ORCID)0000-0002-2436-3944 |
normlink_prefix_str_mv |
(orcid)0000-0002-2436-3944 |
dewey-full |
004 |
title_sort |
johnson graph codes |
title_auth |
Johnson graph codes |
abstract |
Abstract Array codes are the preferred codes for distributed storage, such that different rows in an array are stored at different nodes. Layered codes use a sparse format for stored arrays with a single parity check per column and no other parity checks. Remarkably, the simple structure of layered codes is optimal when data is collected from all but one node. Codes that collect data from fewer nodes include improved layered codes, determinant codes, cascade codes and moulin codes. As our main result we show that the concatenation of layered codes with suitable outer codes achieves the performance of cascade and moulin codes which is conjectured to be optimal for general regenerating codes. The codes that we use as outer codes are in a new class of codes that we call Johnson graph codes. The codes have properties similar to those of Reed–Muller codes. In both cases the topological structure of the set of coordinates can be used to identify information sets and codewords of small weight. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
abstractGer |
Abstract Array codes are the preferred codes for distributed storage, such that different rows in an array are stored at different nodes. Layered codes use a sparse format for stored arrays with a single parity check per column and no other parity checks. Remarkably, the simple structure of layered codes is optimal when data is collected from all but one node. Codes that collect data from fewer nodes include improved layered codes, determinant codes, cascade codes and moulin codes. As our main result we show that the concatenation of layered codes with suitable outer codes achieves the performance of cascade and moulin codes which is conjectured to be optimal for general regenerating codes. The codes that we use as outer codes are in a new class of codes that we call Johnson graph codes. The codes have properties similar to those of Reed–Muller codes. In both cases the topological structure of the set of coordinates can be used to identify information sets and codewords of small weight. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
abstract_unstemmed |
Abstract Array codes are the preferred codes for distributed storage, such that different rows in an array are stored at different nodes. Layered codes use a sparse format for stored arrays with a single parity check per column and no other parity checks. Remarkably, the simple structure of layered codes is optimal when data is collected from all but one node. Codes that collect data from fewer nodes include improved layered codes, determinant codes, cascade codes and moulin codes. As our main result we show that the concatenation of layered codes with suitable outer codes achieves the performance of cascade and moulin codes which is conjectured to be optimal for general regenerating codes. The codes that we use as outer codes are in a new class of codes that we call Johnson graph codes. The codes have properties similar to those of Reed–Muller codes. In both cases the topological structure of the set of coordinates can be used to identify information sets and codewords of small weight. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-MAT |
container_issue |
12 |
title_short |
Johnson graph codes |
url |
https://doi.org/10.1007/s10623-021-01003-1 |
remote_bool |
false |
author2 |
Li, Xiao |
author2Str |
Li, Xiao |
ppnlink |
130994197 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10623-021-01003-1 |
up_date |
2024-07-04T02:32:07.132Z |
_version_ |
1803613977586958336 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2079959166</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506085307.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230131s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10623-021-01003-1</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2079959166</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10623-021-01003-1-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">17,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Duursma, Iwan</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-2436-3944</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Johnson graph codes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Array codes are the preferred codes for distributed storage, such that different rows in an array are stored at different nodes. Layered codes use a sparse format for stored arrays with a single parity check per column and no other parity checks. Remarkably, the simple structure of layered codes is optimal when data is collected from all but one node. Codes that collect data from fewer nodes include improved layered codes, determinant codes, cascade codes and moulin codes. As our main result we show that the concatenation of layered codes with suitable outer codes achieves the performance of cascade and moulin codes which is conjectured to be optimal for general regenerating codes. The codes that we use as outer codes are in a new class of codes that we call Johnson graph codes. The codes have properties similar to those of Reed–Muller codes. In both cases the topological structure of the set of coordinates can be used to identify information sets and codewords of small weight.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Algebraic coding theory</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Codes for distributed storage</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Regenerating codes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Johnson graph</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multilinear algebra</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Determinants</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Li, Xiao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Designs, codes and cryptography</subfield><subfield code="d">Springer US, 1991</subfield><subfield code="g">90(2022), 12 vom: 28. Feb., Seite 2923-2941</subfield><subfield code="w">(DE-627)130994197</subfield><subfield code="w">(DE-600)1082042-5</subfield><subfield code="w">(DE-576)029154375</subfield><subfield code="x">0925-1022</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:90</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:12</subfield><subfield code="g">day:28</subfield><subfield code="g">month:02</subfield><subfield code="g">pages:2923-2941</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10623-021-01003-1</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">90</subfield><subfield code="j">2022</subfield><subfield code="e">12</subfield><subfield code="b">28</subfield><subfield code="c">02</subfield><subfield code="h">2923-2941</subfield></datafield></record></collection>
|
score |
7.400943 |