Optimization method of machining parameters based on intelligent algorithm
Abstract The processing parameters have a particularly significant impact on the quality and efficiency of processing. Selecting the correct processing parameters can greatly improve the processing performance of the machine tool. To this end, by improving the chromosome structure and genetic operat...
Ausführliche Beschreibung
Autor*in: |
Cai, Jie [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Distributed and parallel databases - Springer US, 1993, 40(2021), 4 vom: 03. Aug., Seite 737-752 |
---|---|
Übergeordnetes Werk: |
volume:40 ; year:2021 ; number:4 ; day:03 ; month:08 ; pages:737-752 |
Links: |
---|
DOI / URN: |
10.1007/s10619-021-07357-8 |
---|
Katalog-ID: |
OLC2080009591 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2080009591 | ||
003 | DE-627 | ||
005 | 20230506090515.0 | ||
007 | tu | ||
008 | 230131s2021 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10619-021-07357-8 |2 doi | |
035 | |a (DE-627)OLC2080009591 | ||
035 | |a (DE-He213)s10619-021-07357-8-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 070 |a 020 |a 004 |q VZ |
084 | |a 24,1 |2 ssgn | ||
100 | 1 | |a Cai, Jie |e verfasserin |4 aut | |
245 | 1 | 0 | |a Optimization method of machining parameters based on intelligent algorithm |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 | ||
520 | |a Abstract The processing parameters have a particularly significant impact on the quality and efficiency of processing. Selecting the correct processing parameters can greatly improve the processing performance of the machine tool. To this end, by improving the chromosome structure and genetic operators of the GA algorithm, a new GA-BP neural network algorithm is proposed and combined BP neural network method for adaptive crossover and mutation probability optimization. Then, through comparison experiments. After selecting a certain type of CNC EDM machine, find its standard process parameter table and select 50 groups of data as preparation. 30 groups of data are randomly sampled from the inside to serve as training sample data, and the remaining 20 groups serve as performance test samples. Experimental results show that the prediction accuracy of the new algorithm is higher than that of the conventional algorithm, pulse width or peak current. The new prediction results are often closer to the true value, and the prediction accuracy is higher, which can better meet the processing requirements. | ||
650 | 4 | |a Intelligent algorithms | |
650 | 4 | |a Processing parameters | |
650 | 4 | |a Heavy-duty CNC machine tools | |
650 | 4 | |a Neural network algorithms | |
700 | 1 | |a Zhang, Wei |4 aut | |
700 | 1 | |a Deng, Jinlian |4 aut | |
700 | 1 | |a Zhao, Weisheng |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Distributed and parallel databases |d Springer US, 1993 |g 40(2021), 4 vom: 03. Aug., Seite 737-752 |w (DE-627)165664401 |w (DE-600)913166-8 |w (DE-576)038480352 |x 0926-8782 |7 nnns |
773 | 1 | 8 | |g volume:40 |g year:2021 |g number:4 |g day:03 |g month:08 |g pages:737-752 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10619-021-07357-8 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OPC-BBI | ||
912 | |a GBV_ILN_2244 | ||
912 | |a GBV_ILN_4126 | ||
912 | |a GBV_ILN_4318 | ||
951 | |a AR | ||
952 | |d 40 |j 2021 |e 4 |b 03 |c 08 |h 737-752 |
author_variant |
j c jc w z wz j d jd w z wz |
---|---|
matchkey_str |
article:09268782:2021----::piiainehdfahnnprmtrbsdnn |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s10619-021-07357-8 doi (DE-627)OLC2080009591 (DE-He213)s10619-021-07357-8-p DE-627 ger DE-627 rakwb eng 070 020 004 VZ 24,1 ssgn Cai, Jie verfasserin aut Optimization method of machining parameters based on intelligent algorithm 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract The processing parameters have a particularly significant impact on the quality and efficiency of processing. Selecting the correct processing parameters can greatly improve the processing performance of the machine tool. To this end, by improving the chromosome structure and genetic operators of the GA algorithm, a new GA-BP neural network algorithm is proposed and combined BP neural network method for adaptive crossover and mutation probability optimization. Then, through comparison experiments. After selecting a certain type of CNC EDM machine, find its standard process parameter table and select 50 groups of data as preparation. 30 groups of data are randomly sampled from the inside to serve as training sample data, and the remaining 20 groups serve as performance test samples. Experimental results show that the prediction accuracy of the new algorithm is higher than that of the conventional algorithm, pulse width or peak current. The new prediction results are often closer to the true value, and the prediction accuracy is higher, which can better meet the processing requirements. Intelligent algorithms Processing parameters Heavy-duty CNC machine tools Neural network algorithms Zhang, Wei aut Deng, Jinlian aut Zhao, Weisheng aut Enthalten in Distributed and parallel databases Springer US, 1993 40(2021), 4 vom: 03. Aug., Seite 737-752 (DE-627)165664401 (DE-600)913166-8 (DE-576)038480352 0926-8782 nnns volume:40 year:2021 number:4 day:03 month:08 pages:737-752 https://doi.org/10.1007/s10619-021-07357-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-BBI GBV_ILN_2244 GBV_ILN_4126 GBV_ILN_4318 AR 40 2021 4 03 08 737-752 |
spelling |
10.1007/s10619-021-07357-8 doi (DE-627)OLC2080009591 (DE-He213)s10619-021-07357-8-p DE-627 ger DE-627 rakwb eng 070 020 004 VZ 24,1 ssgn Cai, Jie verfasserin aut Optimization method of machining parameters based on intelligent algorithm 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract The processing parameters have a particularly significant impact on the quality and efficiency of processing. Selecting the correct processing parameters can greatly improve the processing performance of the machine tool. To this end, by improving the chromosome structure and genetic operators of the GA algorithm, a new GA-BP neural network algorithm is proposed and combined BP neural network method for adaptive crossover and mutation probability optimization. Then, through comparison experiments. After selecting a certain type of CNC EDM machine, find its standard process parameter table and select 50 groups of data as preparation. 30 groups of data are randomly sampled from the inside to serve as training sample data, and the remaining 20 groups serve as performance test samples. Experimental results show that the prediction accuracy of the new algorithm is higher than that of the conventional algorithm, pulse width or peak current. The new prediction results are often closer to the true value, and the prediction accuracy is higher, which can better meet the processing requirements. Intelligent algorithms Processing parameters Heavy-duty CNC machine tools Neural network algorithms Zhang, Wei aut Deng, Jinlian aut Zhao, Weisheng aut Enthalten in Distributed and parallel databases Springer US, 1993 40(2021), 4 vom: 03. Aug., Seite 737-752 (DE-627)165664401 (DE-600)913166-8 (DE-576)038480352 0926-8782 nnns volume:40 year:2021 number:4 day:03 month:08 pages:737-752 https://doi.org/10.1007/s10619-021-07357-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-BBI GBV_ILN_2244 GBV_ILN_4126 GBV_ILN_4318 AR 40 2021 4 03 08 737-752 |
allfields_unstemmed |
10.1007/s10619-021-07357-8 doi (DE-627)OLC2080009591 (DE-He213)s10619-021-07357-8-p DE-627 ger DE-627 rakwb eng 070 020 004 VZ 24,1 ssgn Cai, Jie verfasserin aut Optimization method of machining parameters based on intelligent algorithm 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract The processing parameters have a particularly significant impact on the quality and efficiency of processing. Selecting the correct processing parameters can greatly improve the processing performance of the machine tool. To this end, by improving the chromosome structure and genetic operators of the GA algorithm, a new GA-BP neural network algorithm is proposed and combined BP neural network method for adaptive crossover and mutation probability optimization. Then, through comparison experiments. After selecting a certain type of CNC EDM machine, find its standard process parameter table and select 50 groups of data as preparation. 30 groups of data are randomly sampled from the inside to serve as training sample data, and the remaining 20 groups serve as performance test samples. Experimental results show that the prediction accuracy of the new algorithm is higher than that of the conventional algorithm, pulse width or peak current. The new prediction results are often closer to the true value, and the prediction accuracy is higher, which can better meet the processing requirements. Intelligent algorithms Processing parameters Heavy-duty CNC machine tools Neural network algorithms Zhang, Wei aut Deng, Jinlian aut Zhao, Weisheng aut Enthalten in Distributed and parallel databases Springer US, 1993 40(2021), 4 vom: 03. Aug., Seite 737-752 (DE-627)165664401 (DE-600)913166-8 (DE-576)038480352 0926-8782 nnns volume:40 year:2021 number:4 day:03 month:08 pages:737-752 https://doi.org/10.1007/s10619-021-07357-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-BBI GBV_ILN_2244 GBV_ILN_4126 GBV_ILN_4318 AR 40 2021 4 03 08 737-752 |
allfieldsGer |
10.1007/s10619-021-07357-8 doi (DE-627)OLC2080009591 (DE-He213)s10619-021-07357-8-p DE-627 ger DE-627 rakwb eng 070 020 004 VZ 24,1 ssgn Cai, Jie verfasserin aut Optimization method of machining parameters based on intelligent algorithm 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract The processing parameters have a particularly significant impact on the quality and efficiency of processing. Selecting the correct processing parameters can greatly improve the processing performance of the machine tool. To this end, by improving the chromosome structure and genetic operators of the GA algorithm, a new GA-BP neural network algorithm is proposed and combined BP neural network method for adaptive crossover and mutation probability optimization. Then, through comparison experiments. After selecting a certain type of CNC EDM machine, find its standard process parameter table and select 50 groups of data as preparation. 30 groups of data are randomly sampled from the inside to serve as training sample data, and the remaining 20 groups serve as performance test samples. Experimental results show that the prediction accuracy of the new algorithm is higher than that of the conventional algorithm, pulse width or peak current. The new prediction results are often closer to the true value, and the prediction accuracy is higher, which can better meet the processing requirements. Intelligent algorithms Processing parameters Heavy-duty CNC machine tools Neural network algorithms Zhang, Wei aut Deng, Jinlian aut Zhao, Weisheng aut Enthalten in Distributed and parallel databases Springer US, 1993 40(2021), 4 vom: 03. Aug., Seite 737-752 (DE-627)165664401 (DE-600)913166-8 (DE-576)038480352 0926-8782 nnns volume:40 year:2021 number:4 day:03 month:08 pages:737-752 https://doi.org/10.1007/s10619-021-07357-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-BBI GBV_ILN_2244 GBV_ILN_4126 GBV_ILN_4318 AR 40 2021 4 03 08 737-752 |
allfieldsSound |
10.1007/s10619-021-07357-8 doi (DE-627)OLC2080009591 (DE-He213)s10619-021-07357-8-p DE-627 ger DE-627 rakwb eng 070 020 004 VZ 24,1 ssgn Cai, Jie verfasserin aut Optimization method of machining parameters based on intelligent algorithm 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 Abstract The processing parameters have a particularly significant impact on the quality and efficiency of processing. Selecting the correct processing parameters can greatly improve the processing performance of the machine tool. To this end, by improving the chromosome structure and genetic operators of the GA algorithm, a new GA-BP neural network algorithm is proposed and combined BP neural network method for adaptive crossover and mutation probability optimization. Then, through comparison experiments. After selecting a certain type of CNC EDM machine, find its standard process parameter table and select 50 groups of data as preparation. 30 groups of data are randomly sampled from the inside to serve as training sample data, and the remaining 20 groups serve as performance test samples. Experimental results show that the prediction accuracy of the new algorithm is higher than that of the conventional algorithm, pulse width or peak current. The new prediction results are often closer to the true value, and the prediction accuracy is higher, which can better meet the processing requirements. Intelligent algorithms Processing parameters Heavy-duty CNC machine tools Neural network algorithms Zhang, Wei aut Deng, Jinlian aut Zhao, Weisheng aut Enthalten in Distributed and parallel databases Springer US, 1993 40(2021), 4 vom: 03. Aug., Seite 737-752 (DE-627)165664401 (DE-600)913166-8 (DE-576)038480352 0926-8782 nnns volume:40 year:2021 number:4 day:03 month:08 pages:737-752 https://doi.org/10.1007/s10619-021-07357-8 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-BBI GBV_ILN_2244 GBV_ILN_4126 GBV_ILN_4318 AR 40 2021 4 03 08 737-752 |
language |
English |
source |
Enthalten in Distributed and parallel databases 40(2021), 4 vom: 03. Aug., Seite 737-752 volume:40 year:2021 number:4 day:03 month:08 pages:737-752 |
sourceStr |
Enthalten in Distributed and parallel databases 40(2021), 4 vom: 03. Aug., Seite 737-752 volume:40 year:2021 number:4 day:03 month:08 pages:737-752 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Intelligent algorithms Processing parameters Heavy-duty CNC machine tools Neural network algorithms |
dewey-raw |
070 |
isfreeaccess_bool |
false |
container_title |
Distributed and parallel databases |
authorswithroles_txt_mv |
Cai, Jie @@aut@@ Zhang, Wei @@aut@@ Deng, Jinlian @@aut@@ Zhao, Weisheng @@aut@@ |
publishDateDaySort_date |
2021-08-03T00:00:00Z |
hierarchy_top_id |
165664401 |
dewey-sort |
270 |
id |
OLC2080009591 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2080009591</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506090515.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230131s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10619-021-07357-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2080009591</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10619-021-07357-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">020</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">24,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cai, Jie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimization method of machining parameters based on intelligent algorithm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The processing parameters have a particularly significant impact on the quality and efficiency of processing. Selecting the correct processing parameters can greatly improve the processing performance of the machine tool. To this end, by improving the chromosome structure and genetic operators of the GA algorithm, a new GA-BP neural network algorithm is proposed and combined BP neural network method for adaptive crossover and mutation probability optimization. Then, through comparison experiments. After selecting a certain type of CNC EDM machine, find its standard process parameter table and select 50 groups of data as preparation. 30 groups of data are randomly sampled from the inside to serve as training sample data, and the remaining 20 groups serve as performance test samples. Experimental results show that the prediction accuracy of the new algorithm is higher than that of the conventional algorithm, pulse width or peak current. The new prediction results are often closer to the true value, and the prediction accuracy is higher, which can better meet the processing requirements.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligent algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Processing parameters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heavy-duty CNC machine tools</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural network algorithms</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Wei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deng, Jinlian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Weisheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Distributed and parallel databases</subfield><subfield code="d">Springer US, 1993</subfield><subfield code="g">40(2021), 4 vom: 03. Aug., Seite 737-752</subfield><subfield code="w">(DE-627)165664401</subfield><subfield code="w">(DE-600)913166-8</subfield><subfield code="w">(DE-576)038480352</subfield><subfield code="x">0926-8782</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:40</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:4</subfield><subfield code="g">day:03</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:737-752</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10619-021-07357-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2244</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">40</subfield><subfield code="j">2021</subfield><subfield code="e">4</subfield><subfield code="b">03</subfield><subfield code="c">08</subfield><subfield code="h">737-752</subfield></datafield></record></collection>
|
author |
Cai, Jie |
spellingShingle |
Cai, Jie ddc 070 ssgn 24,1 misc Intelligent algorithms misc Processing parameters misc Heavy-duty CNC machine tools misc Neural network algorithms Optimization method of machining parameters based on intelligent algorithm |
authorStr |
Cai, Jie |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)165664401 |
format |
Article |
dewey-ones |
070 - News media, journalism & publishing 020 - Library & information sciences 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0926-8782 |
topic_title |
070 020 004 VZ 24,1 ssgn Optimization method of machining parameters based on intelligent algorithm Intelligent algorithms Processing parameters Heavy-duty CNC machine tools Neural network algorithms |
topic |
ddc 070 ssgn 24,1 misc Intelligent algorithms misc Processing parameters misc Heavy-duty CNC machine tools misc Neural network algorithms |
topic_unstemmed |
ddc 070 ssgn 24,1 misc Intelligent algorithms misc Processing parameters misc Heavy-duty CNC machine tools misc Neural network algorithms |
topic_browse |
ddc 070 ssgn 24,1 misc Intelligent algorithms misc Processing parameters misc Heavy-duty CNC machine tools misc Neural network algorithms |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Distributed and parallel databases |
hierarchy_parent_id |
165664401 |
dewey-tens |
070 - News media, journalism & publishing 020 - Library & information sciences 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Distributed and parallel databases |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)165664401 (DE-600)913166-8 (DE-576)038480352 |
title |
Optimization method of machining parameters based on intelligent algorithm |
ctrlnum |
(DE-627)OLC2080009591 (DE-He213)s10619-021-07357-8-p |
title_full |
Optimization method of machining parameters based on intelligent algorithm |
author_sort |
Cai, Jie |
journal |
Distributed and parallel databases |
journalStr |
Distributed and parallel databases |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
737 |
author_browse |
Cai, Jie Zhang, Wei Deng, Jinlian Zhao, Weisheng |
container_volume |
40 |
class |
070 020 004 VZ 24,1 ssgn |
format_se |
Aufsätze |
author-letter |
Cai, Jie |
doi_str_mv |
10.1007/s10619-021-07357-8 |
dewey-full |
070 020 004 |
title_sort |
optimization method of machining parameters based on intelligent algorithm |
title_auth |
Optimization method of machining parameters based on intelligent algorithm |
abstract |
Abstract The processing parameters have a particularly significant impact on the quality and efficiency of processing. Selecting the correct processing parameters can greatly improve the processing performance of the machine tool. To this end, by improving the chromosome structure and genetic operators of the GA algorithm, a new GA-BP neural network algorithm is proposed and combined BP neural network method for adaptive crossover and mutation probability optimization. Then, through comparison experiments. After selecting a certain type of CNC EDM machine, find its standard process parameter table and select 50 groups of data as preparation. 30 groups of data are randomly sampled from the inside to serve as training sample data, and the remaining 20 groups serve as performance test samples. Experimental results show that the prediction accuracy of the new algorithm is higher than that of the conventional algorithm, pulse width or peak current. The new prediction results are often closer to the true value, and the prediction accuracy is higher, which can better meet the processing requirements. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
abstractGer |
Abstract The processing parameters have a particularly significant impact on the quality and efficiency of processing. Selecting the correct processing parameters can greatly improve the processing performance of the machine tool. To this end, by improving the chromosome structure and genetic operators of the GA algorithm, a new GA-BP neural network algorithm is proposed and combined BP neural network method for adaptive crossover and mutation probability optimization. Then, through comparison experiments. After selecting a certain type of CNC EDM machine, find its standard process parameter table and select 50 groups of data as preparation. 30 groups of data are randomly sampled from the inside to serve as training sample data, and the remaining 20 groups serve as performance test samples. Experimental results show that the prediction accuracy of the new algorithm is higher than that of the conventional algorithm, pulse width or peak current. The new prediction results are often closer to the true value, and the prediction accuracy is higher, which can better meet the processing requirements. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
abstract_unstemmed |
Abstract The processing parameters have a particularly significant impact on the quality and efficiency of processing. Selecting the correct processing parameters can greatly improve the processing performance of the machine tool. To this end, by improving the chromosome structure and genetic operators of the GA algorithm, a new GA-BP neural network algorithm is proposed and combined BP neural network method for adaptive crossover and mutation probability optimization. Then, through comparison experiments. After selecting a certain type of CNC EDM machine, find its standard process parameter table and select 50 groups of data as preparation. 30 groups of data are randomly sampled from the inside to serve as training sample data, and the remaining 20 groups serve as performance test samples. Experimental results show that the prediction accuracy of the new algorithm is higher than that of the conventional algorithm, pulse width or peak current. The new prediction results are often closer to the true value, and the prediction accuracy is higher, which can better meet the processing requirements. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OPC-BBI GBV_ILN_2244 GBV_ILN_4126 GBV_ILN_4318 |
container_issue |
4 |
title_short |
Optimization method of machining parameters based on intelligent algorithm |
url |
https://doi.org/10.1007/s10619-021-07357-8 |
remote_bool |
false |
author2 |
Zhang, Wei Deng, Jinlian Zhao, Weisheng |
author2Str |
Zhang, Wei Deng, Jinlian Zhao, Weisheng |
ppnlink |
165664401 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10619-021-07357-8 |
up_date |
2024-07-04T02:40:31.801Z |
_version_ |
1803614506772856832 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2080009591</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506090515.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230131s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10619-021-07357-8</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2080009591</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10619-021-07357-8-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">020</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">24,1</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Cai, Jie</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimization method of machining parameters based on intelligent algorithm</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract The processing parameters have a particularly significant impact on the quality and efficiency of processing. Selecting the correct processing parameters can greatly improve the processing performance of the machine tool. To this end, by improving the chromosome structure and genetic operators of the GA algorithm, a new GA-BP neural network algorithm is proposed and combined BP neural network method for adaptive crossover and mutation probability optimization. Then, through comparison experiments. After selecting a certain type of CNC EDM machine, find its standard process parameter table and select 50 groups of data as preparation. 30 groups of data are randomly sampled from the inside to serve as training sample data, and the remaining 20 groups serve as performance test samples. Experimental results show that the prediction accuracy of the new algorithm is higher than that of the conventional algorithm, pulse width or peak current. The new prediction results are often closer to the true value, and the prediction accuracy is higher, which can better meet the processing requirements.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Intelligent algorithms</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Processing parameters</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heavy-duty CNC machine tools</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Neural network algorithms</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhang, Wei</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deng, Jinlian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhao, Weisheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Distributed and parallel databases</subfield><subfield code="d">Springer US, 1993</subfield><subfield code="g">40(2021), 4 vom: 03. Aug., Seite 737-752</subfield><subfield code="w">(DE-627)165664401</subfield><subfield code="w">(DE-600)913166-8</subfield><subfield code="w">(DE-576)038480352</subfield><subfield code="x">0926-8782</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:40</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:4</subfield><subfield code="g">day:03</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:737-752</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10619-021-07357-8</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-BBI</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2244</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4126</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_4318</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">40</subfield><subfield code="j">2021</subfield><subfield code="e">4</subfield><subfield code="b">03</subfield><subfield code="c">08</subfield><subfield code="h">737-752</subfield></datafield></record></collection>
|
score |
7.401189 |