Understanding the photon-photon resonance of DBR lasers using mode expansion method
Abstract A theoretical model based on the mode expansion of the traveling wave equations is developed to investigate the mode interaction processes behind the photon-photon resonance (PPR) effect in distributed Bragg reflector (DBR) lasers. With dual-mode rate equations, strength of mode interaction...
Ausführliche Beschreibung
Autor*in: |
Chen, Da [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: Optical and quantum electronics - Springer US, 1975, 55(2022), 1 vom: 21. Nov. |
---|---|
Übergeordnetes Werk: |
volume:55 ; year:2022 ; number:1 ; day:21 ; month:11 |
Links: |
---|
DOI / URN: |
10.1007/s11082-022-04126-4 |
---|
Katalog-ID: |
OLC2080028316 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2080028316 | ||
003 | DE-627 | ||
005 | 20230506151303.0 | ||
007 | tu | ||
008 | 230131s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11082-022-04126-4 |2 doi | |
035 | |a (DE-627)OLC2080028316 | ||
035 | |a (DE-He213)s11082-022-04126-4-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 500 |a 620 |q VZ |
100 | 1 | |a Chen, Da |e verfasserin |4 aut | |
245 | 1 | 0 | |a Understanding the photon-photon resonance of DBR lasers using mode expansion method |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Abstract A theoretical model based on the mode expansion of the traveling wave equations is developed to investigate the mode interaction processes behind the photon-photon resonance (PPR) effect in distributed Bragg reflector (DBR) lasers. With dual-mode rate equations, strength of mode interactions is characterized by the cross power and the coupling factors, which arise from the non-orthogonality of the main mode and the PPR mode. Small signal analysis and large-signal dynamics are performed, and results indicate that the cross power is a key contributor to the PPR effect. | ||
650 | 4 | |a Direct modulated lasers | |
650 | 4 | |a Photon-photon resonance | |
650 | 4 | |a Mode expansion | |
650 | 4 | |a Mode interaction | |
700 | 1 | |a Liu, Ye |4 aut | |
700 | 1 | |a Yu, Yonglin |0 (orcid)0000-0002-2422-7774 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Optical and quantum electronics |d Springer US, 1975 |g 55(2022), 1 vom: 21. Nov. |w (DE-627)129419540 |w (DE-600)189950-8 |w (DE-576)014796139 |x 0306-8919 |7 nnns |
773 | 1 | 8 | |g volume:55 |g year:2022 |g number:1 |g day:21 |g month:11 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11082-022-04126-4 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
951 | |a AR | ||
952 | |d 55 |j 2022 |e 1 |b 21 |c 11 |
author_variant |
d c dc y l yl y y yy |
---|---|
matchkey_str |
article:03068919:2022----::nesadntehtnhtneoacodraessnm |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s11082-022-04126-4 doi (DE-627)OLC2080028316 (DE-He213)s11082-022-04126-4-p DE-627 ger DE-627 rakwb eng 500 620 VZ Chen, Da verfasserin aut Understanding the photon-photon resonance of DBR lasers using mode expansion method 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract A theoretical model based on the mode expansion of the traveling wave equations is developed to investigate the mode interaction processes behind the photon-photon resonance (PPR) effect in distributed Bragg reflector (DBR) lasers. With dual-mode rate equations, strength of mode interactions is characterized by the cross power and the coupling factors, which arise from the non-orthogonality of the main mode and the PPR mode. Small signal analysis and large-signal dynamics are performed, and results indicate that the cross power is a key contributor to the PPR effect. Direct modulated lasers Photon-photon resonance Mode expansion Mode interaction Liu, Ye aut Yu, Yonglin (orcid)0000-0002-2422-7774 aut Enthalten in Optical and quantum electronics Springer US, 1975 55(2022), 1 vom: 21. Nov. (DE-627)129419540 (DE-600)189950-8 (DE-576)014796139 0306-8919 nnns volume:55 year:2022 number:1 day:21 month:11 https://doi.org/10.1007/s11082-022-04126-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY AR 55 2022 1 21 11 |
spelling |
10.1007/s11082-022-04126-4 doi (DE-627)OLC2080028316 (DE-He213)s11082-022-04126-4-p DE-627 ger DE-627 rakwb eng 500 620 VZ Chen, Da verfasserin aut Understanding the photon-photon resonance of DBR lasers using mode expansion method 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract A theoretical model based on the mode expansion of the traveling wave equations is developed to investigate the mode interaction processes behind the photon-photon resonance (PPR) effect in distributed Bragg reflector (DBR) lasers. With dual-mode rate equations, strength of mode interactions is characterized by the cross power and the coupling factors, which arise from the non-orthogonality of the main mode and the PPR mode. Small signal analysis and large-signal dynamics are performed, and results indicate that the cross power is a key contributor to the PPR effect. Direct modulated lasers Photon-photon resonance Mode expansion Mode interaction Liu, Ye aut Yu, Yonglin (orcid)0000-0002-2422-7774 aut Enthalten in Optical and quantum electronics Springer US, 1975 55(2022), 1 vom: 21. Nov. (DE-627)129419540 (DE-600)189950-8 (DE-576)014796139 0306-8919 nnns volume:55 year:2022 number:1 day:21 month:11 https://doi.org/10.1007/s11082-022-04126-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY AR 55 2022 1 21 11 |
allfields_unstemmed |
10.1007/s11082-022-04126-4 doi (DE-627)OLC2080028316 (DE-He213)s11082-022-04126-4-p DE-627 ger DE-627 rakwb eng 500 620 VZ Chen, Da verfasserin aut Understanding the photon-photon resonance of DBR lasers using mode expansion method 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract A theoretical model based on the mode expansion of the traveling wave equations is developed to investigate the mode interaction processes behind the photon-photon resonance (PPR) effect in distributed Bragg reflector (DBR) lasers. With dual-mode rate equations, strength of mode interactions is characterized by the cross power and the coupling factors, which arise from the non-orthogonality of the main mode and the PPR mode. Small signal analysis and large-signal dynamics are performed, and results indicate that the cross power is a key contributor to the PPR effect. Direct modulated lasers Photon-photon resonance Mode expansion Mode interaction Liu, Ye aut Yu, Yonglin (orcid)0000-0002-2422-7774 aut Enthalten in Optical and quantum electronics Springer US, 1975 55(2022), 1 vom: 21. Nov. (DE-627)129419540 (DE-600)189950-8 (DE-576)014796139 0306-8919 nnns volume:55 year:2022 number:1 day:21 month:11 https://doi.org/10.1007/s11082-022-04126-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY AR 55 2022 1 21 11 |
allfieldsGer |
10.1007/s11082-022-04126-4 doi (DE-627)OLC2080028316 (DE-He213)s11082-022-04126-4-p DE-627 ger DE-627 rakwb eng 500 620 VZ Chen, Da verfasserin aut Understanding the photon-photon resonance of DBR lasers using mode expansion method 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract A theoretical model based on the mode expansion of the traveling wave equations is developed to investigate the mode interaction processes behind the photon-photon resonance (PPR) effect in distributed Bragg reflector (DBR) lasers. With dual-mode rate equations, strength of mode interactions is characterized by the cross power and the coupling factors, which arise from the non-orthogonality of the main mode and the PPR mode. Small signal analysis and large-signal dynamics are performed, and results indicate that the cross power is a key contributor to the PPR effect. Direct modulated lasers Photon-photon resonance Mode expansion Mode interaction Liu, Ye aut Yu, Yonglin (orcid)0000-0002-2422-7774 aut Enthalten in Optical and quantum electronics Springer US, 1975 55(2022), 1 vom: 21. Nov. (DE-627)129419540 (DE-600)189950-8 (DE-576)014796139 0306-8919 nnns volume:55 year:2022 number:1 day:21 month:11 https://doi.org/10.1007/s11082-022-04126-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY AR 55 2022 1 21 11 |
allfieldsSound |
10.1007/s11082-022-04126-4 doi (DE-627)OLC2080028316 (DE-He213)s11082-022-04126-4-p DE-627 ger DE-627 rakwb eng 500 620 VZ Chen, Da verfasserin aut Understanding the photon-photon resonance of DBR lasers using mode expansion method 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract A theoretical model based on the mode expansion of the traveling wave equations is developed to investigate the mode interaction processes behind the photon-photon resonance (PPR) effect in distributed Bragg reflector (DBR) lasers. With dual-mode rate equations, strength of mode interactions is characterized by the cross power and the coupling factors, which arise from the non-orthogonality of the main mode and the PPR mode. Small signal analysis and large-signal dynamics are performed, and results indicate that the cross power is a key contributor to the PPR effect. Direct modulated lasers Photon-photon resonance Mode expansion Mode interaction Liu, Ye aut Yu, Yonglin (orcid)0000-0002-2422-7774 aut Enthalten in Optical and quantum electronics Springer US, 1975 55(2022), 1 vom: 21. Nov. (DE-627)129419540 (DE-600)189950-8 (DE-576)014796139 0306-8919 nnns volume:55 year:2022 number:1 day:21 month:11 https://doi.org/10.1007/s11082-022-04126-4 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY AR 55 2022 1 21 11 |
language |
English |
source |
Enthalten in Optical and quantum electronics 55(2022), 1 vom: 21. Nov. volume:55 year:2022 number:1 day:21 month:11 |
sourceStr |
Enthalten in Optical and quantum electronics 55(2022), 1 vom: 21. Nov. volume:55 year:2022 number:1 day:21 month:11 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Direct modulated lasers Photon-photon resonance Mode expansion Mode interaction |
dewey-raw |
500 |
isfreeaccess_bool |
false |
container_title |
Optical and quantum electronics |
authorswithroles_txt_mv |
Chen, Da @@aut@@ Liu, Ye @@aut@@ Yu, Yonglin @@aut@@ |
publishDateDaySort_date |
2022-11-21T00:00:00Z |
hierarchy_top_id |
129419540 |
dewey-sort |
3500 |
id |
OLC2080028316 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2080028316</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506151303.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230131s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11082-022-04126-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2080028316</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11082-022-04126-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Da</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Understanding the photon-photon resonance of DBR lasers using mode expansion method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A theoretical model based on the mode expansion of the traveling wave equations is developed to investigate the mode interaction processes behind the photon-photon resonance (PPR) effect in distributed Bragg reflector (DBR) lasers. With dual-mode rate equations, strength of mode interactions is characterized by the cross power and the coupling factors, which arise from the non-orthogonality of the main mode and the PPR mode. Small signal analysis and large-signal dynamics are performed, and results indicate that the cross power is a key contributor to the PPR effect.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Direct modulated lasers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photon-photon resonance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mode expansion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mode interaction</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Ye</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Yonglin</subfield><subfield code="0">(orcid)0000-0002-2422-7774</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Optical and quantum electronics</subfield><subfield code="d">Springer US, 1975</subfield><subfield code="g">55(2022), 1 vom: 21. Nov.</subfield><subfield code="w">(DE-627)129419540</subfield><subfield code="w">(DE-600)189950-8</subfield><subfield code="w">(DE-576)014796139</subfield><subfield code="x">0306-8919</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:21</subfield><subfield code="g">month:11</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11082-022-04126-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">21</subfield><subfield code="c">11</subfield></datafield></record></collection>
|
author |
Chen, Da |
spellingShingle |
Chen, Da ddc 500 misc Direct modulated lasers misc Photon-photon resonance misc Mode expansion misc Mode interaction Understanding the photon-photon resonance of DBR lasers using mode expansion method |
authorStr |
Chen, Da |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)129419540 |
format |
Article |
dewey-ones |
500 - Natural sciences & mathematics 620 - Engineering & allied operations |
delete_txt_mv |
keep |
author_role |
aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0306-8919 |
topic_title |
500 620 VZ Understanding the photon-photon resonance of DBR lasers using mode expansion method Direct modulated lasers Photon-photon resonance Mode expansion Mode interaction |
topic |
ddc 500 misc Direct modulated lasers misc Photon-photon resonance misc Mode expansion misc Mode interaction |
topic_unstemmed |
ddc 500 misc Direct modulated lasers misc Photon-photon resonance misc Mode expansion misc Mode interaction |
topic_browse |
ddc 500 misc Direct modulated lasers misc Photon-photon resonance misc Mode expansion misc Mode interaction |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Optical and quantum electronics |
hierarchy_parent_id |
129419540 |
dewey-tens |
500 - Science 620 - Engineering |
hierarchy_top_title |
Optical and quantum electronics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)129419540 (DE-600)189950-8 (DE-576)014796139 |
title |
Understanding the photon-photon resonance of DBR lasers using mode expansion method |
ctrlnum |
(DE-627)OLC2080028316 (DE-He213)s11082-022-04126-4-p |
title_full |
Understanding the photon-photon resonance of DBR lasers using mode expansion method |
author_sort |
Chen, Da |
journal |
Optical and quantum electronics |
journalStr |
Optical and quantum electronics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science 600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Chen, Da Liu, Ye Yu, Yonglin |
container_volume |
55 |
class |
500 620 VZ |
format_se |
Aufsätze |
author-letter |
Chen, Da |
doi_str_mv |
10.1007/s11082-022-04126-4 |
normlink |
(ORCID)0000-0002-2422-7774 |
normlink_prefix_str_mv |
(orcid)0000-0002-2422-7774 |
dewey-full |
500 620 |
title_sort |
understanding the photon-photon resonance of dbr lasers using mode expansion method |
title_auth |
Understanding the photon-photon resonance of DBR lasers using mode expansion method |
abstract |
Abstract A theoretical model based on the mode expansion of the traveling wave equations is developed to investigate the mode interaction processes behind the photon-photon resonance (PPR) effect in distributed Bragg reflector (DBR) lasers. With dual-mode rate equations, strength of mode interactions is characterized by the cross power and the coupling factors, which arise from the non-orthogonality of the main mode and the PPR mode. Small signal analysis and large-signal dynamics are performed, and results indicate that the cross power is a key contributor to the PPR effect. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Abstract A theoretical model based on the mode expansion of the traveling wave equations is developed to investigate the mode interaction processes behind the photon-photon resonance (PPR) effect in distributed Bragg reflector (DBR) lasers. With dual-mode rate equations, strength of mode interactions is characterized by the cross power and the coupling factors, which arise from the non-orthogonality of the main mode and the PPR mode. Small signal analysis and large-signal dynamics are performed, and results indicate that the cross power is a key contributor to the PPR effect. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Abstract A theoretical model based on the mode expansion of the traveling wave equations is developed to investigate the mode interaction processes behind the photon-photon resonance (PPR) effect in distributed Bragg reflector (DBR) lasers. With dual-mode rate equations, strength of mode interactions is characterized by the cross power and the coupling factors, which arise from the non-orthogonality of the main mode and the PPR mode. Small signal analysis and large-signal dynamics are performed, and results indicate that the cross power is a key contributor to the PPR effect. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY |
container_issue |
1 |
title_short |
Understanding the photon-photon resonance of DBR lasers using mode expansion method |
url |
https://doi.org/10.1007/s11082-022-04126-4 |
remote_bool |
false |
author2 |
Liu, Ye Yu, Yonglin |
author2Str |
Liu, Ye Yu, Yonglin |
ppnlink |
129419540 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11082-022-04126-4 |
up_date |
2024-07-04T02:43:40.721Z |
_version_ |
1803614704870883328 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2080028316</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506151303.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230131s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11082-022-04126-4</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2080028316</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11082-022-04126-4-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">500</subfield><subfield code="a">620</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Chen, Da</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Understanding the photon-photon resonance of DBR lasers using mode expansion method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract A theoretical model based on the mode expansion of the traveling wave equations is developed to investigate the mode interaction processes behind the photon-photon resonance (PPR) effect in distributed Bragg reflector (DBR) lasers. With dual-mode rate equations, strength of mode interactions is characterized by the cross power and the coupling factors, which arise from the non-orthogonality of the main mode and the PPR mode. Small signal analysis and large-signal dynamics are performed, and results indicate that the cross power is a key contributor to the PPR effect.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Direct modulated lasers</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Photon-photon resonance</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mode expansion</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Mode interaction</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Ye</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Yonglin</subfield><subfield code="0">(orcid)0000-0002-2422-7774</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Optical and quantum electronics</subfield><subfield code="d">Springer US, 1975</subfield><subfield code="g">55(2022), 1 vom: 21. Nov.</subfield><subfield code="w">(DE-627)129419540</subfield><subfield code="w">(DE-600)189950-8</subfield><subfield code="w">(DE-576)014796139</subfield><subfield code="x">0306-8919</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:55</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:21</subfield><subfield code="g">month:11</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11082-022-04126-4</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">55</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">21</subfield><subfield code="c">11</subfield></datafield></record></collection>
|
score |
7.401991 |