Approximation algorithms for solving the heterogeneous Chinese postman problem
Abstract In this paper, we consider the heterogeneous Chinese postman problem (the HCPP), which generalizes the k-Chinese postman problem. Specifically, given a weighted graph $$G=(V,E;w;r)$$ with length function $$w:E\rightarrow R^{+}$$ satisfying the triangle inequality, a fixed depot $$r\in V$$,...
Ausführliche Beschreibung
Autor*in: |
Li, Jianping [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of combinatorial optimization - Springer US, 1997, 45(2022), 1 vom: 25. Nov. |
---|---|
Übergeordnetes Werk: |
volume:45 ; year:2022 ; number:1 ; day:25 ; month:11 |
Links: |
---|
DOI / URN: |
10.1007/s10878-022-00931-5 |
---|
Katalog-ID: |
OLC2080051970 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2080051970 | ||
003 | DE-627 | ||
005 | 20230506153444.0 | ||
007 | tu | ||
008 | 230131s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10878-022-00931-5 |2 doi | |
035 | |a (DE-627)OLC2080051970 | ||
035 | |a (DE-He213)s10878-022-00931-5-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 3,2 |2 ssgn | ||
100 | 1 | |a Li, Jianping |e verfasserin |0 (orcid)0000-0003-1508-1440 |4 aut | |
245 | 1 | 0 | |a Approximation algorithms for solving the heterogeneous Chinese postman problem |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Abstract In this paper, we consider the heterogeneous Chinese postman problem (the HCPP), which generalizes the k-Chinese postman problem. Specifically, given a weighted graph $$G=(V,E;w;r)$$ with length function $$w:E\rightarrow R^{+}$$ satisfying the triangle inequality, a fixed depot $$r\in V$$, and k vehicles having k nonuniform speeds $$\lambda _{1}, \lambda _{2}, \ldots ,\lambda _{k}$$, respectively, it is asked to find k tours in G for these k vehicles, each starting at the same depot r, and collectively traversing each edge in E at least once. The objective is to minimize the maximum completion time of vehicles, where the completion time of a vehicle is its total travel length divided by its speed. The main contribution of our paper is to show the following two results. (1) Given any small constant $$\delta >0$$, we design a $$20.8765(1+\delta )$$-approximation algorithm to solve the HCPP, where the running time required is bounded by a polynomial in the input size and $$\frac{1}{\delta }$$. (2) We present a $$(1+\varDelta -1/k)$$-approximation algorithm to solve the HCPP in cubic time, where $$\varDelta $$ is the ratio of the largest vehicle speed to the smallest one. | ||
650 | 4 | |a Combinatorial optimization | |
650 | 4 | |a Nonuniform speeds | |
650 | 4 | |a Heterogeneous Chinese postman tours | |
650 | 4 | |a Approximation algorithms | |
700 | 1 | |a Pan, Pengxiang |4 aut | |
700 | 1 | |a Lichen, Junran |4 aut | |
700 | 1 | |a Cai, Lijian |4 aut | |
700 | 1 | |a Wang, Wencheng |4 aut | |
700 | 1 | |a Liu, Suding |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of combinatorial optimization |d Springer US, 1997 |g 45(2022), 1 vom: 25. Nov. |w (DE-627)216539323 |w (DE-600)1339574-9 |w (DE-576)094421935 |x 1382-6905 |7 nnns |
773 | 1 | 8 | |g volume:45 |g year:2022 |g number:1 |g day:25 |g month:11 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10878-022-00931-5 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-WIW | ||
912 | |a SSG-OPC-MAT | ||
912 | |a GBV_ILN_2108 | ||
951 | |a AR | ||
952 | |d 45 |j 2022 |e 1 |b 25 |c 11 |
author_variant |
j l jl p p pp j l jl l c lc w w ww s l sl |
---|---|
matchkey_str |
article:13826905:2022----::prxmtoagrtmfrovnteeeoeeuc |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s10878-022-00931-5 doi (DE-627)OLC2080051970 (DE-He213)s10878-022-00931-5-p DE-627 ger DE-627 rakwb eng 510 VZ 3,2 ssgn Li, Jianping verfasserin (orcid)0000-0003-1508-1440 aut Approximation algorithms for solving the heterogeneous Chinese postman problem 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract In this paper, we consider the heterogeneous Chinese postman problem (the HCPP), which generalizes the k-Chinese postman problem. Specifically, given a weighted graph $$G=(V,E;w;r)$$ with length function $$w:E\rightarrow R^{+}$$ satisfying the triangle inequality, a fixed depot $$r\in V$$, and k vehicles having k nonuniform speeds $$\lambda _{1}, \lambda _{2}, \ldots ,\lambda _{k}$$, respectively, it is asked to find k tours in G for these k vehicles, each starting at the same depot r, and collectively traversing each edge in E at least once. The objective is to minimize the maximum completion time of vehicles, where the completion time of a vehicle is its total travel length divided by its speed. The main contribution of our paper is to show the following two results. (1) Given any small constant $$\delta >0$$, we design a $$20.8765(1+\delta )$$-approximation algorithm to solve the HCPP, where the running time required is bounded by a polynomial in the input size and $$\frac{1}{\delta }$$. (2) We present a $$(1+\varDelta -1/k)$$-approximation algorithm to solve the HCPP in cubic time, where $$\varDelta $$ is the ratio of the largest vehicle speed to the smallest one. Combinatorial optimization Nonuniform speeds Heterogeneous Chinese postman tours Approximation algorithms Pan, Pengxiang aut Lichen, Junran aut Cai, Lijian aut Wang, Wencheng aut Liu, Suding aut Enthalten in Journal of combinatorial optimization Springer US, 1997 45(2022), 1 vom: 25. Nov. (DE-627)216539323 (DE-600)1339574-9 (DE-576)094421935 1382-6905 nnns volume:45 year:2022 number:1 day:25 month:11 https://doi.org/10.1007/s10878-022-00931-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_2108 AR 45 2022 1 25 11 |
spelling |
10.1007/s10878-022-00931-5 doi (DE-627)OLC2080051970 (DE-He213)s10878-022-00931-5-p DE-627 ger DE-627 rakwb eng 510 VZ 3,2 ssgn Li, Jianping verfasserin (orcid)0000-0003-1508-1440 aut Approximation algorithms for solving the heterogeneous Chinese postman problem 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract In this paper, we consider the heterogeneous Chinese postman problem (the HCPP), which generalizes the k-Chinese postman problem. Specifically, given a weighted graph $$G=(V,E;w;r)$$ with length function $$w:E\rightarrow R^{+}$$ satisfying the triangle inequality, a fixed depot $$r\in V$$, and k vehicles having k nonuniform speeds $$\lambda _{1}, \lambda _{2}, \ldots ,\lambda _{k}$$, respectively, it is asked to find k tours in G for these k vehicles, each starting at the same depot r, and collectively traversing each edge in E at least once. The objective is to minimize the maximum completion time of vehicles, where the completion time of a vehicle is its total travel length divided by its speed. The main contribution of our paper is to show the following two results. (1) Given any small constant $$\delta >0$$, we design a $$20.8765(1+\delta )$$-approximation algorithm to solve the HCPP, where the running time required is bounded by a polynomial in the input size and $$\frac{1}{\delta }$$. (2) We present a $$(1+\varDelta -1/k)$$-approximation algorithm to solve the HCPP in cubic time, where $$\varDelta $$ is the ratio of the largest vehicle speed to the smallest one. Combinatorial optimization Nonuniform speeds Heterogeneous Chinese postman tours Approximation algorithms Pan, Pengxiang aut Lichen, Junran aut Cai, Lijian aut Wang, Wencheng aut Liu, Suding aut Enthalten in Journal of combinatorial optimization Springer US, 1997 45(2022), 1 vom: 25. Nov. (DE-627)216539323 (DE-600)1339574-9 (DE-576)094421935 1382-6905 nnns volume:45 year:2022 number:1 day:25 month:11 https://doi.org/10.1007/s10878-022-00931-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_2108 AR 45 2022 1 25 11 |
allfields_unstemmed |
10.1007/s10878-022-00931-5 doi (DE-627)OLC2080051970 (DE-He213)s10878-022-00931-5-p DE-627 ger DE-627 rakwb eng 510 VZ 3,2 ssgn Li, Jianping verfasserin (orcid)0000-0003-1508-1440 aut Approximation algorithms for solving the heterogeneous Chinese postman problem 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract In this paper, we consider the heterogeneous Chinese postman problem (the HCPP), which generalizes the k-Chinese postman problem. Specifically, given a weighted graph $$G=(V,E;w;r)$$ with length function $$w:E\rightarrow R^{+}$$ satisfying the triangle inequality, a fixed depot $$r\in V$$, and k vehicles having k nonuniform speeds $$\lambda _{1}, \lambda _{2}, \ldots ,\lambda _{k}$$, respectively, it is asked to find k tours in G for these k vehicles, each starting at the same depot r, and collectively traversing each edge in E at least once. The objective is to minimize the maximum completion time of vehicles, where the completion time of a vehicle is its total travel length divided by its speed. The main contribution of our paper is to show the following two results. (1) Given any small constant $$\delta >0$$, we design a $$20.8765(1+\delta )$$-approximation algorithm to solve the HCPP, where the running time required is bounded by a polynomial in the input size and $$\frac{1}{\delta }$$. (2) We present a $$(1+\varDelta -1/k)$$-approximation algorithm to solve the HCPP in cubic time, where $$\varDelta $$ is the ratio of the largest vehicle speed to the smallest one. Combinatorial optimization Nonuniform speeds Heterogeneous Chinese postman tours Approximation algorithms Pan, Pengxiang aut Lichen, Junran aut Cai, Lijian aut Wang, Wencheng aut Liu, Suding aut Enthalten in Journal of combinatorial optimization Springer US, 1997 45(2022), 1 vom: 25. Nov. (DE-627)216539323 (DE-600)1339574-9 (DE-576)094421935 1382-6905 nnns volume:45 year:2022 number:1 day:25 month:11 https://doi.org/10.1007/s10878-022-00931-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_2108 AR 45 2022 1 25 11 |
allfieldsGer |
10.1007/s10878-022-00931-5 doi (DE-627)OLC2080051970 (DE-He213)s10878-022-00931-5-p DE-627 ger DE-627 rakwb eng 510 VZ 3,2 ssgn Li, Jianping verfasserin (orcid)0000-0003-1508-1440 aut Approximation algorithms for solving the heterogeneous Chinese postman problem 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract In this paper, we consider the heterogeneous Chinese postman problem (the HCPP), which generalizes the k-Chinese postman problem. Specifically, given a weighted graph $$G=(V,E;w;r)$$ with length function $$w:E\rightarrow R^{+}$$ satisfying the triangle inequality, a fixed depot $$r\in V$$, and k vehicles having k nonuniform speeds $$\lambda _{1}, \lambda _{2}, \ldots ,\lambda _{k}$$, respectively, it is asked to find k tours in G for these k vehicles, each starting at the same depot r, and collectively traversing each edge in E at least once. The objective is to minimize the maximum completion time of vehicles, where the completion time of a vehicle is its total travel length divided by its speed. The main contribution of our paper is to show the following two results. (1) Given any small constant $$\delta >0$$, we design a $$20.8765(1+\delta )$$-approximation algorithm to solve the HCPP, where the running time required is bounded by a polynomial in the input size and $$\frac{1}{\delta }$$. (2) We present a $$(1+\varDelta -1/k)$$-approximation algorithm to solve the HCPP in cubic time, where $$\varDelta $$ is the ratio of the largest vehicle speed to the smallest one. Combinatorial optimization Nonuniform speeds Heterogeneous Chinese postman tours Approximation algorithms Pan, Pengxiang aut Lichen, Junran aut Cai, Lijian aut Wang, Wencheng aut Liu, Suding aut Enthalten in Journal of combinatorial optimization Springer US, 1997 45(2022), 1 vom: 25. Nov. (DE-627)216539323 (DE-600)1339574-9 (DE-576)094421935 1382-6905 nnns volume:45 year:2022 number:1 day:25 month:11 https://doi.org/10.1007/s10878-022-00931-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_2108 AR 45 2022 1 25 11 |
allfieldsSound |
10.1007/s10878-022-00931-5 doi (DE-627)OLC2080051970 (DE-He213)s10878-022-00931-5-p DE-627 ger DE-627 rakwb eng 510 VZ 3,2 ssgn Li, Jianping verfasserin (orcid)0000-0003-1508-1440 aut Approximation algorithms for solving the heterogeneous Chinese postman problem 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract In this paper, we consider the heterogeneous Chinese postman problem (the HCPP), which generalizes the k-Chinese postman problem. Specifically, given a weighted graph $$G=(V,E;w;r)$$ with length function $$w:E\rightarrow R^{+}$$ satisfying the triangle inequality, a fixed depot $$r\in V$$, and k vehicles having k nonuniform speeds $$\lambda _{1}, \lambda _{2}, \ldots ,\lambda _{k}$$, respectively, it is asked to find k tours in G for these k vehicles, each starting at the same depot r, and collectively traversing each edge in E at least once. The objective is to minimize the maximum completion time of vehicles, where the completion time of a vehicle is its total travel length divided by its speed. The main contribution of our paper is to show the following two results. (1) Given any small constant $$\delta >0$$, we design a $$20.8765(1+\delta )$$-approximation algorithm to solve the HCPP, where the running time required is bounded by a polynomial in the input size and $$\frac{1}{\delta }$$. (2) We present a $$(1+\varDelta -1/k)$$-approximation algorithm to solve the HCPP in cubic time, where $$\varDelta $$ is the ratio of the largest vehicle speed to the smallest one. Combinatorial optimization Nonuniform speeds Heterogeneous Chinese postman tours Approximation algorithms Pan, Pengxiang aut Lichen, Junran aut Cai, Lijian aut Wang, Wencheng aut Liu, Suding aut Enthalten in Journal of combinatorial optimization Springer US, 1997 45(2022), 1 vom: 25. Nov. (DE-627)216539323 (DE-600)1339574-9 (DE-576)094421935 1382-6905 nnns volume:45 year:2022 number:1 day:25 month:11 https://doi.org/10.1007/s10878-022-00931-5 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_2108 AR 45 2022 1 25 11 |
language |
English |
source |
Enthalten in Journal of combinatorial optimization 45(2022), 1 vom: 25. Nov. volume:45 year:2022 number:1 day:25 month:11 |
sourceStr |
Enthalten in Journal of combinatorial optimization 45(2022), 1 vom: 25. Nov. volume:45 year:2022 number:1 day:25 month:11 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Combinatorial optimization Nonuniform speeds Heterogeneous Chinese postman tours Approximation algorithms |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Journal of combinatorial optimization |
authorswithroles_txt_mv |
Li, Jianping @@aut@@ Pan, Pengxiang @@aut@@ Lichen, Junran @@aut@@ Cai, Lijian @@aut@@ Wang, Wencheng @@aut@@ Liu, Suding @@aut@@ |
publishDateDaySort_date |
2022-11-25T00:00:00Z |
hierarchy_top_id |
216539323 |
dewey-sort |
3510 |
id |
OLC2080051970 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2080051970</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506153444.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230131s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10878-022-00931-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2080051970</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10878-022-00931-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">3,2</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Jianping</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1508-1440</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Approximation algorithms for solving the heterogeneous Chinese postman problem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we consider the heterogeneous Chinese postman problem (the HCPP), which generalizes the k-Chinese postman problem. Specifically, given a weighted graph $$G=(V,E;w;r)$$ with length function $$w:E\rightarrow R^{+}$$ satisfying the triangle inequality, a fixed depot $$r\in V$$, and k vehicles having k nonuniform speeds $$\lambda _{1}, \lambda _{2}, \ldots ,\lambda _{k}$$, respectively, it is asked to find k tours in G for these k vehicles, each starting at the same depot r, and collectively traversing each edge in E at least once. The objective is to minimize the maximum completion time of vehicles, where the completion time of a vehicle is its total travel length divided by its speed. The main contribution of our paper is to show the following two results. (1) Given any small constant $$\delta >0$$, we design a $$20.8765(1+\delta )$$-approximation algorithm to solve the HCPP, where the running time required is bounded by a polynomial in the input size and $$\frac{1}{\delta }$$. (2) We present a $$(1+\varDelta -1/k)$$-approximation algorithm to solve the HCPP in cubic time, where $$\varDelta $$ is the ratio of the largest vehicle speed to the smallest one.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonuniform speeds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heterogeneous Chinese postman tours</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximation algorithms</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pan, Pengxiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lichen, Junran</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cai, Lijian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Wencheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Suding</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of combinatorial optimization</subfield><subfield code="d">Springer US, 1997</subfield><subfield code="g">45(2022), 1 vom: 25. Nov.</subfield><subfield code="w">(DE-627)216539323</subfield><subfield code="w">(DE-600)1339574-9</subfield><subfield code="w">(DE-576)094421935</subfield><subfield code="x">1382-6905</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:45</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:25</subfield><subfield code="g">month:11</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10878-022-00931-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">45</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">25</subfield><subfield code="c">11</subfield></datafield></record></collection>
|
author |
Li, Jianping |
spellingShingle |
Li, Jianping ddc 510 ssgn 3,2 misc Combinatorial optimization misc Nonuniform speeds misc Heterogeneous Chinese postman tours misc Approximation algorithms Approximation algorithms for solving the heterogeneous Chinese postman problem |
authorStr |
Li, Jianping |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)216539323 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1382-6905 |
topic_title |
510 VZ 3,2 ssgn Approximation algorithms for solving the heterogeneous Chinese postman problem Combinatorial optimization Nonuniform speeds Heterogeneous Chinese postman tours Approximation algorithms |
topic |
ddc 510 ssgn 3,2 misc Combinatorial optimization misc Nonuniform speeds misc Heterogeneous Chinese postman tours misc Approximation algorithms |
topic_unstemmed |
ddc 510 ssgn 3,2 misc Combinatorial optimization misc Nonuniform speeds misc Heterogeneous Chinese postman tours misc Approximation algorithms |
topic_browse |
ddc 510 ssgn 3,2 misc Combinatorial optimization misc Nonuniform speeds misc Heterogeneous Chinese postman tours misc Approximation algorithms |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of combinatorial optimization |
hierarchy_parent_id |
216539323 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Journal of combinatorial optimization |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)216539323 (DE-600)1339574-9 (DE-576)094421935 |
title |
Approximation algorithms for solving the heterogeneous Chinese postman problem |
ctrlnum |
(DE-627)OLC2080051970 (DE-He213)s10878-022-00931-5-p |
title_full |
Approximation algorithms for solving the heterogeneous Chinese postman problem |
author_sort |
Li, Jianping |
journal |
Journal of combinatorial optimization |
journalStr |
Journal of combinatorial optimization |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
author_browse |
Li, Jianping Pan, Pengxiang Lichen, Junran Cai, Lijian Wang, Wencheng Liu, Suding |
container_volume |
45 |
class |
510 VZ 3,2 ssgn |
format_se |
Aufsätze |
author-letter |
Li, Jianping |
doi_str_mv |
10.1007/s10878-022-00931-5 |
normlink |
(ORCID)0000-0003-1508-1440 |
normlink_prefix_str_mv |
(orcid)0000-0003-1508-1440 |
dewey-full |
510 |
title_sort |
approximation algorithms for solving the heterogeneous chinese postman problem |
title_auth |
Approximation algorithms for solving the heterogeneous Chinese postman problem |
abstract |
Abstract In this paper, we consider the heterogeneous Chinese postman problem (the HCPP), which generalizes the k-Chinese postman problem. Specifically, given a weighted graph $$G=(V,E;w;r)$$ with length function $$w:E\rightarrow R^{+}$$ satisfying the triangle inequality, a fixed depot $$r\in V$$, and k vehicles having k nonuniform speeds $$\lambda _{1}, \lambda _{2}, \ldots ,\lambda _{k}$$, respectively, it is asked to find k tours in G for these k vehicles, each starting at the same depot r, and collectively traversing each edge in E at least once. The objective is to minimize the maximum completion time of vehicles, where the completion time of a vehicle is its total travel length divided by its speed. The main contribution of our paper is to show the following two results. (1) Given any small constant $$\delta >0$$, we design a $$20.8765(1+\delta )$$-approximation algorithm to solve the HCPP, where the running time required is bounded by a polynomial in the input size and $$\frac{1}{\delta }$$. (2) We present a $$(1+\varDelta -1/k)$$-approximation algorithm to solve the HCPP in cubic time, where $$\varDelta $$ is the ratio of the largest vehicle speed to the smallest one. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Abstract In this paper, we consider the heterogeneous Chinese postman problem (the HCPP), which generalizes the k-Chinese postman problem. Specifically, given a weighted graph $$G=(V,E;w;r)$$ with length function $$w:E\rightarrow R^{+}$$ satisfying the triangle inequality, a fixed depot $$r\in V$$, and k vehicles having k nonuniform speeds $$\lambda _{1}, \lambda _{2}, \ldots ,\lambda _{k}$$, respectively, it is asked to find k tours in G for these k vehicles, each starting at the same depot r, and collectively traversing each edge in E at least once. The objective is to minimize the maximum completion time of vehicles, where the completion time of a vehicle is its total travel length divided by its speed. The main contribution of our paper is to show the following two results. (1) Given any small constant $$\delta >0$$, we design a $$20.8765(1+\delta )$$-approximation algorithm to solve the HCPP, where the running time required is bounded by a polynomial in the input size and $$\frac{1}{\delta }$$. (2) We present a $$(1+\varDelta -1/k)$$-approximation algorithm to solve the HCPP in cubic time, where $$\varDelta $$ is the ratio of the largest vehicle speed to the smallest one. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Abstract In this paper, we consider the heterogeneous Chinese postman problem (the HCPP), which generalizes the k-Chinese postman problem. Specifically, given a weighted graph $$G=(V,E;w;r)$$ with length function $$w:E\rightarrow R^{+}$$ satisfying the triangle inequality, a fixed depot $$r\in V$$, and k vehicles having k nonuniform speeds $$\lambda _{1}, \lambda _{2}, \ldots ,\lambda _{k}$$, respectively, it is asked to find k tours in G for these k vehicles, each starting at the same depot r, and collectively traversing each edge in E at least once. The objective is to minimize the maximum completion time of vehicles, where the completion time of a vehicle is its total travel length divided by its speed. The main contribution of our paper is to show the following two results. (1) Given any small constant $$\delta >0$$, we design a $$20.8765(1+\delta )$$-approximation algorithm to solve the HCPP, where the running time required is bounded by a polynomial in the input size and $$\frac{1}{\delta }$$. (2) We present a $$(1+\varDelta -1/k)$$-approximation algorithm to solve the HCPP in cubic time, where $$\varDelta $$ is the ratio of the largest vehicle speed to the smallest one. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-WIW SSG-OPC-MAT GBV_ILN_2108 |
container_issue |
1 |
title_short |
Approximation algorithms for solving the heterogeneous Chinese postman problem |
url |
https://doi.org/10.1007/s10878-022-00931-5 |
remote_bool |
false |
author2 |
Pan, Pengxiang Lichen, Junran Cai, Lijian Wang, Wencheng Liu, Suding |
author2Str |
Pan, Pengxiang Lichen, Junran Cai, Lijian Wang, Wencheng Liu, Suding |
ppnlink |
216539323 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10878-022-00931-5 |
up_date |
2024-07-04T02:47:40.305Z |
_version_ |
1803614956093964288 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2080051970</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506153444.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230131s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10878-022-00931-5</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2080051970</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10878-022-00931-5-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">3,2</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Li, Jianping</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0003-1508-1440</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Approximation algorithms for solving the heterogeneous Chinese postman problem</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022. Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract In this paper, we consider the heterogeneous Chinese postman problem (the HCPP), which generalizes the k-Chinese postman problem. Specifically, given a weighted graph $$G=(V,E;w;r)$$ with length function $$w:E\rightarrow R^{+}$$ satisfying the triangle inequality, a fixed depot $$r\in V$$, and k vehicles having k nonuniform speeds $$\lambda _{1}, \lambda _{2}, \ldots ,\lambda _{k}$$, respectively, it is asked to find k tours in G for these k vehicles, each starting at the same depot r, and collectively traversing each edge in E at least once. The objective is to minimize the maximum completion time of vehicles, where the completion time of a vehicle is its total travel length divided by its speed. The main contribution of our paper is to show the following two results. (1) Given any small constant $$\delta >0$$, we design a $$20.8765(1+\delta )$$-approximation algorithm to solve the HCPP, where the running time required is bounded by a polynomial in the input size and $$\frac{1}{\delta }$$. (2) We present a $$(1+\varDelta -1/k)$$-approximation algorithm to solve the HCPP in cubic time, where $$\varDelta $$ is the ratio of the largest vehicle speed to the smallest one.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Combinatorial optimization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Nonuniform speeds</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Heterogeneous Chinese postman tours</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Approximation algorithms</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Pan, Pengxiang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lichen, Junran</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cai, Lijian</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Wencheng</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Suding</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of combinatorial optimization</subfield><subfield code="d">Springer US, 1997</subfield><subfield code="g">45(2022), 1 vom: 25. Nov.</subfield><subfield code="w">(DE-627)216539323</subfield><subfield code="w">(DE-600)1339574-9</subfield><subfield code="w">(DE-576)094421935</subfield><subfield code="x">1382-6905</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:45</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:1</subfield><subfield code="g">day:25</subfield><subfield code="g">month:11</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10878-022-00931-5</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-WIW</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_ILN_2108</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">45</subfield><subfield code="j">2022</subfield><subfield code="e">1</subfield><subfield code="b">25</subfield><subfield code="c">11</subfield></datafield></record></collection>
|
score |
7.4013567 |