Study of crystallization and glass transition kinetics of bismuth-modified zinc vanadate glasses by non-isothermal method
Abstract Present communication reports the crystallization and glass transition kinetics of x$ Bi_{2} $$ O_{3} $–(50 − x)ZnO–$ 50V_{2} $$ O_{5} $ glass system using the non-isothermal method of differential scanning calorimetry. The activation energies for crystallization (Ec) and glass transition (...
Ausführliche Beschreibung
Autor*in: |
Pawaria, Suman [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© Akadémiai Kiadó, Budapest, Hungary 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: Journal of thermal analysis and calorimetry - Springer International Publishing, 1998, 147(2022), 23 vom: 12. Aug., Seite 13099-13110 |
---|---|
Übergeordnetes Werk: |
volume:147 ; year:2022 ; number:23 ; day:12 ; month:08 ; pages:13099-13110 |
Links: |
---|
DOI / URN: |
10.1007/s10973-022-11531-0 |
---|
Katalog-ID: |
OLC2080052624 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2080052624 | ||
003 | DE-627 | ||
005 | 20230511165337.0 | ||
007 | tu | ||
008 | 230131s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10973-022-11531-0 |2 doi | |
035 | |a (DE-627)OLC2080052624 | ||
035 | |a (DE-He213)s10973-022-11531-0-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 660 |q VZ |
100 | 1 | |a Pawaria, Suman |e verfasserin |4 aut | |
245 | 1 | 0 | |a Study of crystallization and glass transition kinetics of bismuth-modified zinc vanadate glasses by non-isothermal method |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © Akadémiai Kiadó, Budapest, Hungary 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Abstract Present communication reports the crystallization and glass transition kinetics of x$ Bi_{2} $$ O_{3} $–(50 − x)ZnO–$ 50V_{2} $$ O_{5} $ glass system using the non-isothermal method of differential scanning calorimetry. The activation energies for crystallization (Ec) and glass transition (Eg) have been extracted from the fitting of various theoretical models with experimental data. The values of Ec and Eg for the studied glass samples lie in the range of 158.60–223.74 kJ $ mol^{−1} $ and 406.06–479.23 kJ $ mol^{−1} $, respectively. The activation energies of crystallization extracted from the fitting of experimental data with Avrami’s equation and the Augis–Bennet model are in close agreement. The thermal stability of studied glass compositions has been analysed in the light of various parameters, viz. temperature difference (∆T), Hruby parameter (Hr), full width at half maximum of crystallization peak, frequency factor (ν), configurational constant (B), fraction of fluctuation free volume (fg) and thermal expansion coefficient (αf). It has been observed that volume nucleation occurs in the glass system under reference. The studied glass compositions are of low fragile nature, having a fragility index (m) ~ 40. | ||
650 | 4 | |a DSC | |
650 | 4 | |a Non-isothermal method | |
650 | 4 | |a Crystallization kinetics | |
650 | 4 | |a Crystalline activation energy | |
650 | 4 | |a Avrami exponent | |
650 | 4 | |a Fragility index | |
700 | 1 | |a Bala, Manju |4 aut | |
700 | 1 | |a Duhan, Harshvardhan |4 aut | |
700 | 1 | |a Deopa, Nisha |4 aut | |
700 | 1 | |a Dahiya, Sajjan |4 aut | |
700 | 1 | |a Ohlan, Anil |4 aut | |
700 | 1 | |a Punia, Rajesh |0 (orcid)0000-0003-2246-9339 |4 aut | |
700 | 1 | |a Maan, A. S. |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Journal of thermal analysis and calorimetry |d Springer International Publishing, 1998 |g 147(2022), 23 vom: 12. Aug., Seite 13099-13110 |w (DE-627)244148767 |w (DE-600)1429493-X |w (DE-576)066397693 |x 1388-6150 |7 nnns |
773 | 1 | 8 | |g volume:147 |g year:2022 |g number:23 |g day:12 |g month:08 |g pages:13099-13110 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10973-022-11531-0 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
951 | |a AR | ||
952 | |d 147 |j 2022 |e 23 |b 12 |c 08 |h 13099-13110 |
author_variant |
s p sp m b mb h d hd n d nd s d sd a o ao r p rp a s m as asm |
---|---|
matchkey_str |
article:13886150:2022----::tdocytliainngasrniinieisfimtmdfeznvndtg |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s10973-022-11531-0 doi (DE-627)OLC2080052624 (DE-He213)s10973-022-11531-0-p DE-627 ger DE-627 rakwb eng 660 VZ Pawaria, Suman verfasserin aut Study of crystallization and glass transition kinetics of bismuth-modified zinc vanadate glasses by non-isothermal method 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Present communication reports the crystallization and glass transition kinetics of x$ Bi_{2} $$ O_{3} $–(50 − x)ZnO–$ 50V_{2} $$ O_{5} $ glass system using the non-isothermal method of differential scanning calorimetry. The activation energies for crystallization (Ec) and glass transition (Eg) have been extracted from the fitting of various theoretical models with experimental data. The values of Ec and Eg for the studied glass samples lie in the range of 158.60–223.74 kJ $ mol^{−1} $ and 406.06–479.23 kJ $ mol^{−1} $, respectively. The activation energies of crystallization extracted from the fitting of experimental data with Avrami’s equation and the Augis–Bennet model are in close agreement. The thermal stability of studied glass compositions has been analysed in the light of various parameters, viz. temperature difference (∆T), Hruby parameter (Hr), full width at half maximum of crystallization peak, frequency factor (ν), configurational constant (B), fraction of fluctuation free volume (fg) and thermal expansion coefficient (αf). It has been observed that volume nucleation occurs in the glass system under reference. The studied glass compositions are of low fragile nature, having a fragility index (m) ~ 40. DSC Non-isothermal method Crystallization kinetics Crystalline activation energy Avrami exponent Fragility index Bala, Manju aut Duhan, Harshvardhan aut Deopa, Nisha aut Dahiya, Sajjan aut Ohlan, Anil aut Punia, Rajesh (orcid)0000-0003-2246-9339 aut Maan, A. S. aut Enthalten in Journal of thermal analysis and calorimetry Springer International Publishing, 1998 147(2022), 23 vom: 12. Aug., Seite 13099-13110 (DE-627)244148767 (DE-600)1429493-X (DE-576)066397693 1388-6150 nnns volume:147 year:2022 number:23 day:12 month:08 pages:13099-13110 https://doi.org/10.1007/s10973-022-11531-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 AR 147 2022 23 12 08 13099-13110 |
spelling |
10.1007/s10973-022-11531-0 doi (DE-627)OLC2080052624 (DE-He213)s10973-022-11531-0-p DE-627 ger DE-627 rakwb eng 660 VZ Pawaria, Suman verfasserin aut Study of crystallization and glass transition kinetics of bismuth-modified zinc vanadate glasses by non-isothermal method 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Present communication reports the crystallization and glass transition kinetics of x$ Bi_{2} $$ O_{3} $–(50 − x)ZnO–$ 50V_{2} $$ O_{5} $ glass system using the non-isothermal method of differential scanning calorimetry. The activation energies for crystallization (Ec) and glass transition (Eg) have been extracted from the fitting of various theoretical models with experimental data. The values of Ec and Eg for the studied glass samples lie in the range of 158.60–223.74 kJ $ mol^{−1} $ and 406.06–479.23 kJ $ mol^{−1} $, respectively. The activation energies of crystallization extracted from the fitting of experimental data with Avrami’s equation and the Augis–Bennet model are in close agreement. The thermal stability of studied glass compositions has been analysed in the light of various parameters, viz. temperature difference (∆T), Hruby parameter (Hr), full width at half maximum of crystallization peak, frequency factor (ν), configurational constant (B), fraction of fluctuation free volume (fg) and thermal expansion coefficient (αf). It has been observed that volume nucleation occurs in the glass system under reference. The studied glass compositions are of low fragile nature, having a fragility index (m) ~ 40. DSC Non-isothermal method Crystallization kinetics Crystalline activation energy Avrami exponent Fragility index Bala, Manju aut Duhan, Harshvardhan aut Deopa, Nisha aut Dahiya, Sajjan aut Ohlan, Anil aut Punia, Rajesh (orcid)0000-0003-2246-9339 aut Maan, A. S. aut Enthalten in Journal of thermal analysis and calorimetry Springer International Publishing, 1998 147(2022), 23 vom: 12. Aug., Seite 13099-13110 (DE-627)244148767 (DE-600)1429493-X (DE-576)066397693 1388-6150 nnns volume:147 year:2022 number:23 day:12 month:08 pages:13099-13110 https://doi.org/10.1007/s10973-022-11531-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 AR 147 2022 23 12 08 13099-13110 |
allfields_unstemmed |
10.1007/s10973-022-11531-0 doi (DE-627)OLC2080052624 (DE-He213)s10973-022-11531-0-p DE-627 ger DE-627 rakwb eng 660 VZ Pawaria, Suman verfasserin aut Study of crystallization and glass transition kinetics of bismuth-modified zinc vanadate glasses by non-isothermal method 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Present communication reports the crystallization and glass transition kinetics of x$ Bi_{2} $$ O_{3} $–(50 − x)ZnO–$ 50V_{2} $$ O_{5} $ glass system using the non-isothermal method of differential scanning calorimetry. The activation energies for crystallization (Ec) and glass transition (Eg) have been extracted from the fitting of various theoretical models with experimental data. The values of Ec and Eg for the studied glass samples lie in the range of 158.60–223.74 kJ $ mol^{−1} $ and 406.06–479.23 kJ $ mol^{−1} $, respectively. The activation energies of crystallization extracted from the fitting of experimental data with Avrami’s equation and the Augis–Bennet model are in close agreement. The thermal stability of studied glass compositions has been analysed in the light of various parameters, viz. temperature difference (∆T), Hruby parameter (Hr), full width at half maximum of crystallization peak, frequency factor (ν), configurational constant (B), fraction of fluctuation free volume (fg) and thermal expansion coefficient (αf). It has been observed that volume nucleation occurs in the glass system under reference. The studied glass compositions are of low fragile nature, having a fragility index (m) ~ 40. DSC Non-isothermal method Crystallization kinetics Crystalline activation energy Avrami exponent Fragility index Bala, Manju aut Duhan, Harshvardhan aut Deopa, Nisha aut Dahiya, Sajjan aut Ohlan, Anil aut Punia, Rajesh (orcid)0000-0003-2246-9339 aut Maan, A. S. aut Enthalten in Journal of thermal analysis and calorimetry Springer International Publishing, 1998 147(2022), 23 vom: 12. Aug., Seite 13099-13110 (DE-627)244148767 (DE-600)1429493-X (DE-576)066397693 1388-6150 nnns volume:147 year:2022 number:23 day:12 month:08 pages:13099-13110 https://doi.org/10.1007/s10973-022-11531-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 AR 147 2022 23 12 08 13099-13110 |
allfieldsGer |
10.1007/s10973-022-11531-0 doi (DE-627)OLC2080052624 (DE-He213)s10973-022-11531-0-p DE-627 ger DE-627 rakwb eng 660 VZ Pawaria, Suman verfasserin aut Study of crystallization and glass transition kinetics of bismuth-modified zinc vanadate glasses by non-isothermal method 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Present communication reports the crystallization and glass transition kinetics of x$ Bi_{2} $$ O_{3} $–(50 − x)ZnO–$ 50V_{2} $$ O_{5} $ glass system using the non-isothermal method of differential scanning calorimetry. The activation energies for crystallization (Ec) and glass transition (Eg) have been extracted from the fitting of various theoretical models with experimental data. The values of Ec and Eg for the studied glass samples lie in the range of 158.60–223.74 kJ $ mol^{−1} $ and 406.06–479.23 kJ $ mol^{−1} $, respectively. The activation energies of crystallization extracted from the fitting of experimental data with Avrami’s equation and the Augis–Bennet model are in close agreement. The thermal stability of studied glass compositions has been analysed in the light of various parameters, viz. temperature difference (∆T), Hruby parameter (Hr), full width at half maximum of crystallization peak, frequency factor (ν), configurational constant (B), fraction of fluctuation free volume (fg) and thermal expansion coefficient (αf). It has been observed that volume nucleation occurs in the glass system under reference. The studied glass compositions are of low fragile nature, having a fragility index (m) ~ 40. DSC Non-isothermal method Crystallization kinetics Crystalline activation energy Avrami exponent Fragility index Bala, Manju aut Duhan, Harshvardhan aut Deopa, Nisha aut Dahiya, Sajjan aut Ohlan, Anil aut Punia, Rajesh (orcid)0000-0003-2246-9339 aut Maan, A. S. aut Enthalten in Journal of thermal analysis and calorimetry Springer International Publishing, 1998 147(2022), 23 vom: 12. Aug., Seite 13099-13110 (DE-627)244148767 (DE-600)1429493-X (DE-576)066397693 1388-6150 nnns volume:147 year:2022 number:23 day:12 month:08 pages:13099-13110 https://doi.org/10.1007/s10973-022-11531-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 AR 147 2022 23 12 08 13099-13110 |
allfieldsSound |
10.1007/s10973-022-11531-0 doi (DE-627)OLC2080052624 (DE-He213)s10973-022-11531-0-p DE-627 ger DE-627 rakwb eng 660 VZ Pawaria, Suman verfasserin aut Study of crystallization and glass transition kinetics of bismuth-modified zinc vanadate glasses by non-isothermal method 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © Akadémiai Kiadó, Budapest, Hungary 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Present communication reports the crystallization and glass transition kinetics of x$ Bi_{2} $$ O_{3} $–(50 − x)ZnO–$ 50V_{2} $$ O_{5} $ glass system using the non-isothermal method of differential scanning calorimetry. The activation energies for crystallization (Ec) and glass transition (Eg) have been extracted from the fitting of various theoretical models with experimental data. The values of Ec and Eg for the studied glass samples lie in the range of 158.60–223.74 kJ $ mol^{−1} $ and 406.06–479.23 kJ $ mol^{−1} $, respectively. The activation energies of crystallization extracted from the fitting of experimental data with Avrami’s equation and the Augis–Bennet model are in close agreement. The thermal stability of studied glass compositions has been analysed in the light of various parameters, viz. temperature difference (∆T), Hruby parameter (Hr), full width at half maximum of crystallization peak, frequency factor (ν), configurational constant (B), fraction of fluctuation free volume (fg) and thermal expansion coefficient (αf). It has been observed that volume nucleation occurs in the glass system under reference. The studied glass compositions are of low fragile nature, having a fragility index (m) ~ 40. DSC Non-isothermal method Crystallization kinetics Crystalline activation energy Avrami exponent Fragility index Bala, Manju aut Duhan, Harshvardhan aut Deopa, Nisha aut Dahiya, Sajjan aut Ohlan, Anil aut Punia, Rajesh (orcid)0000-0003-2246-9339 aut Maan, A. S. aut Enthalten in Journal of thermal analysis and calorimetry Springer International Publishing, 1998 147(2022), 23 vom: 12. Aug., Seite 13099-13110 (DE-627)244148767 (DE-600)1429493-X (DE-576)066397693 1388-6150 nnns volume:147 year:2022 number:23 day:12 month:08 pages:13099-13110 https://doi.org/10.1007/s10973-022-11531-0 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 AR 147 2022 23 12 08 13099-13110 |
language |
English |
source |
Enthalten in Journal of thermal analysis and calorimetry 147(2022), 23 vom: 12. Aug., Seite 13099-13110 volume:147 year:2022 number:23 day:12 month:08 pages:13099-13110 |
sourceStr |
Enthalten in Journal of thermal analysis and calorimetry 147(2022), 23 vom: 12. Aug., Seite 13099-13110 volume:147 year:2022 number:23 day:12 month:08 pages:13099-13110 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
DSC Non-isothermal method Crystallization kinetics Crystalline activation energy Avrami exponent Fragility index |
dewey-raw |
660 |
isfreeaccess_bool |
false |
container_title |
Journal of thermal analysis and calorimetry |
authorswithroles_txt_mv |
Pawaria, Suman @@aut@@ Bala, Manju @@aut@@ Duhan, Harshvardhan @@aut@@ Deopa, Nisha @@aut@@ Dahiya, Sajjan @@aut@@ Ohlan, Anil @@aut@@ Punia, Rajesh @@aut@@ Maan, A. S. @@aut@@ |
publishDateDaySort_date |
2022-08-12T00:00:00Z |
hierarchy_top_id |
244148767 |
dewey-sort |
3660 |
id |
OLC2080052624 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2080052624</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230511165337.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230131s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10973-022-11531-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2080052624</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10973-022-11531-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pawaria, Suman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Study of crystallization and glass transition kinetics of bismuth-modified zinc vanadate glasses by non-isothermal method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Akadémiai Kiadó, Budapest, Hungary 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Present communication reports the crystallization and glass transition kinetics of x$ Bi_{2} $$ O_{3} $–(50 − x)ZnO–$ 50V_{2} $$ O_{5} $ glass system using the non-isothermal method of differential scanning calorimetry. The activation energies for crystallization (Ec) and glass transition (Eg) have been extracted from the fitting of various theoretical models with experimental data. The values of Ec and Eg for the studied glass samples lie in the range of 158.60–223.74 kJ $ mol^{−1} $ and 406.06–479.23 kJ $ mol^{−1} $, respectively. The activation energies of crystallization extracted from the fitting of experimental data with Avrami’s equation and the Augis–Bennet model are in close agreement. The thermal stability of studied glass compositions has been analysed in the light of various parameters, viz. temperature difference (∆T), Hruby parameter (Hr), full width at half maximum of crystallization peak, frequency factor (ν), configurational constant (B), fraction of fluctuation free volume (fg) and thermal expansion coefficient (αf). It has been observed that volume nucleation occurs in the glass system under reference. The studied glass compositions are of low fragile nature, having a fragility index (m) ~ 40.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DSC</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-isothermal method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crystallization kinetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crystalline activation energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Avrami exponent</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fragility index</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bala, Manju</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Duhan, Harshvardhan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deopa, Nisha</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dahiya, Sajjan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ohlan, Anil</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Punia, Rajesh</subfield><subfield code="0">(orcid)0000-0003-2246-9339</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maan, A. S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of thermal analysis and calorimetry</subfield><subfield code="d">Springer International Publishing, 1998</subfield><subfield code="g">147(2022), 23 vom: 12. Aug., Seite 13099-13110</subfield><subfield code="w">(DE-627)244148767</subfield><subfield code="w">(DE-600)1429493-X</subfield><subfield code="w">(DE-576)066397693</subfield><subfield code="x">1388-6150</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:147</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:23</subfield><subfield code="g">day:12</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:13099-13110</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10973-022-11531-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">147</subfield><subfield code="j">2022</subfield><subfield code="e">23</subfield><subfield code="b">12</subfield><subfield code="c">08</subfield><subfield code="h">13099-13110</subfield></datafield></record></collection>
|
author |
Pawaria, Suman |
spellingShingle |
Pawaria, Suman ddc 660 misc DSC misc Non-isothermal method misc Crystallization kinetics misc Crystalline activation energy misc Avrami exponent misc Fragility index Study of crystallization and glass transition kinetics of bismuth-modified zinc vanadate glasses by non-isothermal method |
authorStr |
Pawaria, Suman |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)244148767 |
format |
Article |
dewey-ones |
660 - Chemical engineering |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1388-6150 |
topic_title |
660 VZ Study of crystallization and glass transition kinetics of bismuth-modified zinc vanadate glasses by non-isothermal method DSC Non-isothermal method Crystallization kinetics Crystalline activation energy Avrami exponent Fragility index |
topic |
ddc 660 misc DSC misc Non-isothermal method misc Crystallization kinetics misc Crystalline activation energy misc Avrami exponent misc Fragility index |
topic_unstemmed |
ddc 660 misc DSC misc Non-isothermal method misc Crystallization kinetics misc Crystalline activation energy misc Avrami exponent misc Fragility index |
topic_browse |
ddc 660 misc DSC misc Non-isothermal method misc Crystallization kinetics misc Crystalline activation energy misc Avrami exponent misc Fragility index |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Journal of thermal analysis and calorimetry |
hierarchy_parent_id |
244148767 |
dewey-tens |
660 - Chemical engineering |
hierarchy_top_title |
Journal of thermal analysis and calorimetry |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)244148767 (DE-600)1429493-X (DE-576)066397693 |
title |
Study of crystallization and glass transition kinetics of bismuth-modified zinc vanadate glasses by non-isothermal method |
ctrlnum |
(DE-627)OLC2080052624 (DE-He213)s10973-022-11531-0-p |
title_full |
Study of crystallization and glass transition kinetics of bismuth-modified zinc vanadate glasses by non-isothermal method |
author_sort |
Pawaria, Suman |
journal |
Journal of thermal analysis and calorimetry |
journalStr |
Journal of thermal analysis and calorimetry |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
600 - Technology |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
13099 |
author_browse |
Pawaria, Suman Bala, Manju Duhan, Harshvardhan Deopa, Nisha Dahiya, Sajjan Ohlan, Anil Punia, Rajesh Maan, A. S. |
container_volume |
147 |
class |
660 VZ |
format_se |
Aufsätze |
author-letter |
Pawaria, Suman |
doi_str_mv |
10.1007/s10973-022-11531-0 |
normlink |
(ORCID)0000-0003-2246-9339 |
normlink_prefix_str_mv |
(orcid)0000-0003-2246-9339 |
dewey-full |
660 |
title_sort |
study of crystallization and glass transition kinetics of bismuth-modified zinc vanadate glasses by non-isothermal method |
title_auth |
Study of crystallization and glass transition kinetics of bismuth-modified zinc vanadate glasses by non-isothermal method |
abstract |
Abstract Present communication reports the crystallization and glass transition kinetics of x$ Bi_{2} $$ O_{3} $–(50 − x)ZnO–$ 50V_{2} $$ O_{5} $ glass system using the non-isothermal method of differential scanning calorimetry. The activation energies for crystallization (Ec) and glass transition (Eg) have been extracted from the fitting of various theoretical models with experimental data. The values of Ec and Eg for the studied glass samples lie in the range of 158.60–223.74 kJ $ mol^{−1} $ and 406.06–479.23 kJ $ mol^{−1} $, respectively. The activation energies of crystallization extracted from the fitting of experimental data with Avrami’s equation and the Augis–Bennet model are in close agreement. The thermal stability of studied glass compositions has been analysed in the light of various parameters, viz. temperature difference (∆T), Hruby parameter (Hr), full width at half maximum of crystallization peak, frequency factor (ν), configurational constant (B), fraction of fluctuation free volume (fg) and thermal expansion coefficient (αf). It has been observed that volume nucleation occurs in the glass system under reference. The studied glass compositions are of low fragile nature, having a fragility index (m) ~ 40. © Akadémiai Kiadó, Budapest, Hungary 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Abstract Present communication reports the crystallization and glass transition kinetics of x$ Bi_{2} $$ O_{3} $–(50 − x)ZnO–$ 50V_{2} $$ O_{5} $ glass system using the non-isothermal method of differential scanning calorimetry. The activation energies for crystallization (Ec) and glass transition (Eg) have been extracted from the fitting of various theoretical models with experimental data. The values of Ec and Eg for the studied glass samples lie in the range of 158.60–223.74 kJ $ mol^{−1} $ and 406.06–479.23 kJ $ mol^{−1} $, respectively. The activation energies of crystallization extracted from the fitting of experimental data with Avrami’s equation and the Augis–Bennet model are in close agreement. The thermal stability of studied glass compositions has been analysed in the light of various parameters, viz. temperature difference (∆T), Hruby parameter (Hr), full width at half maximum of crystallization peak, frequency factor (ν), configurational constant (B), fraction of fluctuation free volume (fg) and thermal expansion coefficient (αf). It has been observed that volume nucleation occurs in the glass system under reference. The studied glass compositions are of low fragile nature, having a fragility index (m) ~ 40. © Akadémiai Kiadó, Budapest, Hungary 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Abstract Present communication reports the crystallization and glass transition kinetics of x$ Bi_{2} $$ O_{3} $–(50 − x)ZnO–$ 50V_{2} $$ O_{5} $ glass system using the non-isothermal method of differential scanning calorimetry. The activation energies for crystallization (Ec) and glass transition (Eg) have been extracted from the fitting of various theoretical models with experimental data. The values of Ec and Eg for the studied glass samples lie in the range of 158.60–223.74 kJ $ mol^{−1} $ and 406.06–479.23 kJ $ mol^{−1} $, respectively. The activation energies of crystallization extracted from the fitting of experimental data with Avrami’s equation and the Augis–Bennet model are in close agreement. The thermal stability of studied glass compositions has been analysed in the light of various parameters, viz. temperature difference (∆T), Hruby parameter (Hr), full width at half maximum of crystallization peak, frequency factor (ν), configurational constant (B), fraction of fluctuation free volume (fg) and thermal expansion coefficient (αf). It has been observed that volume nucleation occurs in the glass system under reference. The studied glass compositions are of low fragile nature, having a fragility index (m) ~ 40. © Akadémiai Kiadó, Budapest, Hungary 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-CHE SSG-OLC-PHA SSG-OLC-DE-84 |
container_issue |
23 |
title_short |
Study of crystallization and glass transition kinetics of bismuth-modified zinc vanadate glasses by non-isothermal method |
url |
https://doi.org/10.1007/s10973-022-11531-0 |
remote_bool |
false |
author2 |
Bala, Manju Duhan, Harshvardhan Deopa, Nisha Dahiya, Sajjan Ohlan, Anil Punia, Rajesh Maan, A. S. |
author2Str |
Bala, Manju Duhan, Harshvardhan Deopa, Nisha Dahiya, Sajjan Ohlan, Anil Punia, Rajesh Maan, A. S. |
ppnlink |
244148767 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10973-022-11531-0 |
up_date |
2024-07-04T02:47:46.042Z |
_version_ |
1803614962109644800 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2080052624</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230511165337.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230131s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10973-022-11531-0</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2080052624</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10973-022-11531-0-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">660</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Pawaria, Suman</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Study of crystallization and glass transition kinetics of bismuth-modified zinc vanadate glasses by non-isothermal method</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© Akadémiai Kiadó, Budapest, Hungary 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Present communication reports the crystallization and glass transition kinetics of x$ Bi_{2} $$ O_{3} $–(50 − x)ZnO–$ 50V_{2} $$ O_{5} $ glass system using the non-isothermal method of differential scanning calorimetry. The activation energies for crystallization (Ec) and glass transition (Eg) have been extracted from the fitting of various theoretical models with experimental data. The values of Ec and Eg for the studied glass samples lie in the range of 158.60–223.74 kJ $ mol^{−1} $ and 406.06–479.23 kJ $ mol^{−1} $, respectively. The activation energies of crystallization extracted from the fitting of experimental data with Avrami’s equation and the Augis–Bennet model are in close agreement. The thermal stability of studied glass compositions has been analysed in the light of various parameters, viz. temperature difference (∆T), Hruby parameter (Hr), full width at half maximum of crystallization peak, frequency factor (ν), configurational constant (B), fraction of fluctuation free volume (fg) and thermal expansion coefficient (αf). It has been observed that volume nucleation occurs in the glass system under reference. The studied glass compositions are of low fragile nature, having a fragility index (m) ~ 40.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">DSC</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Non-isothermal method</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crystallization kinetics</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Crystalline activation energy</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Avrami exponent</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fragility index</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bala, Manju</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Duhan, Harshvardhan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Deopa, Nisha</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Dahiya, Sajjan</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Ohlan, Anil</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Punia, Rajesh</subfield><subfield code="0">(orcid)0000-0003-2246-9339</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Maan, A. S.</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Journal of thermal analysis and calorimetry</subfield><subfield code="d">Springer International Publishing, 1998</subfield><subfield code="g">147(2022), 23 vom: 12. Aug., Seite 13099-13110</subfield><subfield code="w">(DE-627)244148767</subfield><subfield code="w">(DE-600)1429493-X</subfield><subfield code="w">(DE-576)066397693</subfield><subfield code="x">1388-6150</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:147</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:23</subfield><subfield code="g">day:12</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:13099-13110</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10973-022-11531-0</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">147</subfield><subfield code="j">2022</subfield><subfield code="e">23</subfield><subfield code="b">12</subfield><subfield code="c">08</subfield><subfield code="h">13099-13110</subfield></datafield></record></collection>
|
score |
7.3985195 |