Magnetic resonance imaging standardization for accurate grading of cerebral gliomas
Abstract Computer-aided diagnosis has attracted attention for the accurate grading of cerebral glioma. Most algorithms are only effective in relatively large datasets. Although multicenter data sharing is expanding, the results of cerebral glioma grading are not promising for multicenter data. Consi...
Ausführliche Beschreibung
Autor*in: |
Zhao, Guohua [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2021 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 |
---|
Übergeordnetes Werk: |
Enthalten in: Multimedia tools and applications - Springer US, 1995, 81(2021), 29 vom: 11. Jan., Seite 41477-41496 |
---|---|
Übergeordnetes Werk: |
volume:81 ; year:2021 ; number:29 ; day:11 ; month:01 ; pages:41477-41496 |
Links: |
---|
DOI / URN: |
10.1007/s11042-020-10487-3 |
---|
Katalog-ID: |
OLC2080057642 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2080057642 | ||
003 | DE-627 | ||
005 | 20230506092736.0 | ||
007 | tu | ||
008 | 230131s2021 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11042-020-10487-3 |2 doi | |
035 | |a (DE-627)OLC2080057642 | ||
035 | |a (DE-He213)s11042-020-10487-3-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 070 |a 004 |q VZ |
100 | 1 | |a Zhao, Guohua |e verfasserin |0 (orcid)0000-0002-8813-8527 |4 aut | |
245 | 1 | 0 | |a Magnetic resonance imaging standardization for accurate grading of cerebral gliomas |
264 | 1 | |c 2021 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 | ||
520 | |a Abstract Computer-aided diagnosis has attracted attention for the accurate grading of cerebral glioma. Most algorithms are only effective in relatively large datasets. Although multicenter data sharing is expanding, the results of cerebral glioma grading are not promising for multicenter data. Considering that multicenter images differ in contrast, we propose an effective image standardization method to reduce the disparity in image contrast of different datasets. The method is adopted in multiple sets of comparative experiments on a public dataset (BraTS2017) and a local dataset. The classification accuracy of experimental data relative to that of multicenter data without image normalization is improved by approximately 25% on average. Results demonstrate that the proposed approach is effective in solving the image contrast disparity of multicenter data. It also addresses the challenge of limited effective sample size in accurate cerebral glioma grading. The novel image standardization technology proposed in this work is a promising solution that can be integrated into expert systems. | ||
650 | 4 | |a Data standardization | |
650 | 4 | |a Histogram specification | |
650 | 4 | |a Grid search | |
650 | 4 | |a MRI | |
650 | 4 | |a Multicenter | |
700 | 1 | |a Bai, Jie |0 (orcid)0000-0002-7744-1117 |4 aut | |
700 | 1 | |a Yang, Guan |0 (orcid)0000-0002-1659-2819 |4 aut | |
700 | 1 | |a Shi, Lei |0 (orcid)0000-0002-0655-3971 |4 aut | |
700 | 1 | |a Tao, Yongcai |0 (orcid)0000-0003-3098-3960 |4 aut | |
700 | 1 | |a Cheng, Jingliang |0 (orcid)0000-0001-9944-8419 |4 aut | |
700 | 1 | |a Lin, Yusong |0 (orcid)0000-0002-2284-5763 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Multimedia tools and applications |d Springer US, 1995 |g 81(2021), 29 vom: 11. Jan., Seite 41477-41496 |w (DE-627)189064145 |w (DE-600)1287642-2 |w (DE-576)052842126 |x 1380-7501 |7 nnns |
773 | 1 | 8 | |g volume:81 |g year:2021 |g number:29 |g day:11 |g month:01 |g pages:41477-41496 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11042-020-10487-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-BUB | ||
912 | |a SSG-OLC-MKW | ||
951 | |a AR | ||
952 | |d 81 |j 2021 |e 29 |b 11 |c 01 |h 41477-41496 |
author_variant |
g z gz j b jb g y gy l s ls y t yt j c jc y l yl |
---|---|
matchkey_str |
article:13807501:2021----::antceoaciaigtnadztofrcuaerd |
hierarchy_sort_str |
2021 |
publishDate |
2021 |
allfields |
10.1007/s11042-020-10487-3 doi (DE-627)OLC2080057642 (DE-He213)s11042-020-10487-3-p DE-627 ger DE-627 rakwb eng 070 004 VZ Zhao, Guohua verfasserin (orcid)0000-0002-8813-8527 aut Magnetic resonance imaging standardization for accurate grading of cerebral gliomas 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 Abstract Computer-aided diagnosis has attracted attention for the accurate grading of cerebral glioma. Most algorithms are only effective in relatively large datasets. Although multicenter data sharing is expanding, the results of cerebral glioma grading are not promising for multicenter data. Considering that multicenter images differ in contrast, we propose an effective image standardization method to reduce the disparity in image contrast of different datasets. The method is adopted in multiple sets of comparative experiments on a public dataset (BraTS2017) and a local dataset. The classification accuracy of experimental data relative to that of multicenter data without image normalization is improved by approximately 25% on average. Results demonstrate that the proposed approach is effective in solving the image contrast disparity of multicenter data. It also addresses the challenge of limited effective sample size in accurate cerebral glioma grading. The novel image standardization technology proposed in this work is a promising solution that can be integrated into expert systems. Data standardization Histogram specification Grid search MRI Multicenter Bai, Jie (orcid)0000-0002-7744-1117 aut Yang, Guan (orcid)0000-0002-1659-2819 aut Shi, Lei (orcid)0000-0002-0655-3971 aut Tao, Yongcai (orcid)0000-0003-3098-3960 aut Cheng, Jingliang (orcid)0000-0001-9944-8419 aut Lin, Yusong (orcid)0000-0002-2284-5763 aut Enthalten in Multimedia tools and applications Springer US, 1995 81(2021), 29 vom: 11. Jan., Seite 41477-41496 (DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 1380-7501 nnns volume:81 year:2021 number:29 day:11 month:01 pages:41477-41496 https://doi.org/10.1007/s11042-020-10487-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW AR 81 2021 29 11 01 41477-41496 |
spelling |
10.1007/s11042-020-10487-3 doi (DE-627)OLC2080057642 (DE-He213)s11042-020-10487-3-p DE-627 ger DE-627 rakwb eng 070 004 VZ Zhao, Guohua verfasserin (orcid)0000-0002-8813-8527 aut Magnetic resonance imaging standardization for accurate grading of cerebral gliomas 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 Abstract Computer-aided diagnosis has attracted attention for the accurate grading of cerebral glioma. Most algorithms are only effective in relatively large datasets. Although multicenter data sharing is expanding, the results of cerebral glioma grading are not promising for multicenter data. Considering that multicenter images differ in contrast, we propose an effective image standardization method to reduce the disparity in image contrast of different datasets. The method is adopted in multiple sets of comparative experiments on a public dataset (BraTS2017) and a local dataset. The classification accuracy of experimental data relative to that of multicenter data without image normalization is improved by approximately 25% on average. Results demonstrate that the proposed approach is effective in solving the image contrast disparity of multicenter data. It also addresses the challenge of limited effective sample size in accurate cerebral glioma grading. The novel image standardization technology proposed in this work is a promising solution that can be integrated into expert systems. Data standardization Histogram specification Grid search MRI Multicenter Bai, Jie (orcid)0000-0002-7744-1117 aut Yang, Guan (orcid)0000-0002-1659-2819 aut Shi, Lei (orcid)0000-0002-0655-3971 aut Tao, Yongcai (orcid)0000-0003-3098-3960 aut Cheng, Jingliang (orcid)0000-0001-9944-8419 aut Lin, Yusong (orcid)0000-0002-2284-5763 aut Enthalten in Multimedia tools and applications Springer US, 1995 81(2021), 29 vom: 11. Jan., Seite 41477-41496 (DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 1380-7501 nnns volume:81 year:2021 number:29 day:11 month:01 pages:41477-41496 https://doi.org/10.1007/s11042-020-10487-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW AR 81 2021 29 11 01 41477-41496 |
allfields_unstemmed |
10.1007/s11042-020-10487-3 doi (DE-627)OLC2080057642 (DE-He213)s11042-020-10487-3-p DE-627 ger DE-627 rakwb eng 070 004 VZ Zhao, Guohua verfasserin (orcid)0000-0002-8813-8527 aut Magnetic resonance imaging standardization for accurate grading of cerebral gliomas 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 Abstract Computer-aided diagnosis has attracted attention for the accurate grading of cerebral glioma. Most algorithms are only effective in relatively large datasets. Although multicenter data sharing is expanding, the results of cerebral glioma grading are not promising for multicenter data. Considering that multicenter images differ in contrast, we propose an effective image standardization method to reduce the disparity in image contrast of different datasets. The method is adopted in multiple sets of comparative experiments on a public dataset (BraTS2017) and a local dataset. The classification accuracy of experimental data relative to that of multicenter data without image normalization is improved by approximately 25% on average. Results demonstrate that the proposed approach is effective in solving the image contrast disparity of multicenter data. It also addresses the challenge of limited effective sample size in accurate cerebral glioma grading. The novel image standardization technology proposed in this work is a promising solution that can be integrated into expert systems. Data standardization Histogram specification Grid search MRI Multicenter Bai, Jie (orcid)0000-0002-7744-1117 aut Yang, Guan (orcid)0000-0002-1659-2819 aut Shi, Lei (orcid)0000-0002-0655-3971 aut Tao, Yongcai (orcid)0000-0003-3098-3960 aut Cheng, Jingliang (orcid)0000-0001-9944-8419 aut Lin, Yusong (orcid)0000-0002-2284-5763 aut Enthalten in Multimedia tools and applications Springer US, 1995 81(2021), 29 vom: 11. Jan., Seite 41477-41496 (DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 1380-7501 nnns volume:81 year:2021 number:29 day:11 month:01 pages:41477-41496 https://doi.org/10.1007/s11042-020-10487-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW AR 81 2021 29 11 01 41477-41496 |
allfieldsGer |
10.1007/s11042-020-10487-3 doi (DE-627)OLC2080057642 (DE-He213)s11042-020-10487-3-p DE-627 ger DE-627 rakwb eng 070 004 VZ Zhao, Guohua verfasserin (orcid)0000-0002-8813-8527 aut Magnetic resonance imaging standardization for accurate grading of cerebral gliomas 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 Abstract Computer-aided diagnosis has attracted attention for the accurate grading of cerebral glioma. Most algorithms are only effective in relatively large datasets. Although multicenter data sharing is expanding, the results of cerebral glioma grading are not promising for multicenter data. Considering that multicenter images differ in contrast, we propose an effective image standardization method to reduce the disparity in image contrast of different datasets. The method is adopted in multiple sets of comparative experiments on a public dataset (BraTS2017) and a local dataset. The classification accuracy of experimental data relative to that of multicenter data without image normalization is improved by approximately 25% on average. Results demonstrate that the proposed approach is effective in solving the image contrast disparity of multicenter data. It also addresses the challenge of limited effective sample size in accurate cerebral glioma grading. The novel image standardization technology proposed in this work is a promising solution that can be integrated into expert systems. Data standardization Histogram specification Grid search MRI Multicenter Bai, Jie (orcid)0000-0002-7744-1117 aut Yang, Guan (orcid)0000-0002-1659-2819 aut Shi, Lei (orcid)0000-0002-0655-3971 aut Tao, Yongcai (orcid)0000-0003-3098-3960 aut Cheng, Jingliang (orcid)0000-0001-9944-8419 aut Lin, Yusong (orcid)0000-0002-2284-5763 aut Enthalten in Multimedia tools and applications Springer US, 1995 81(2021), 29 vom: 11. Jan., Seite 41477-41496 (DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 1380-7501 nnns volume:81 year:2021 number:29 day:11 month:01 pages:41477-41496 https://doi.org/10.1007/s11042-020-10487-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW AR 81 2021 29 11 01 41477-41496 |
allfieldsSound |
10.1007/s11042-020-10487-3 doi (DE-627)OLC2080057642 (DE-He213)s11042-020-10487-3-p DE-627 ger DE-627 rakwb eng 070 004 VZ Zhao, Guohua verfasserin (orcid)0000-0002-8813-8527 aut Magnetic resonance imaging standardization for accurate grading of cerebral gliomas 2021 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 Abstract Computer-aided diagnosis has attracted attention for the accurate grading of cerebral glioma. Most algorithms are only effective in relatively large datasets. Although multicenter data sharing is expanding, the results of cerebral glioma grading are not promising for multicenter data. Considering that multicenter images differ in contrast, we propose an effective image standardization method to reduce the disparity in image contrast of different datasets. The method is adopted in multiple sets of comparative experiments on a public dataset (BraTS2017) and a local dataset. The classification accuracy of experimental data relative to that of multicenter data without image normalization is improved by approximately 25% on average. Results demonstrate that the proposed approach is effective in solving the image contrast disparity of multicenter data. It also addresses the challenge of limited effective sample size in accurate cerebral glioma grading. The novel image standardization technology proposed in this work is a promising solution that can be integrated into expert systems. Data standardization Histogram specification Grid search MRI Multicenter Bai, Jie (orcid)0000-0002-7744-1117 aut Yang, Guan (orcid)0000-0002-1659-2819 aut Shi, Lei (orcid)0000-0002-0655-3971 aut Tao, Yongcai (orcid)0000-0003-3098-3960 aut Cheng, Jingliang (orcid)0000-0001-9944-8419 aut Lin, Yusong (orcid)0000-0002-2284-5763 aut Enthalten in Multimedia tools and applications Springer US, 1995 81(2021), 29 vom: 11. Jan., Seite 41477-41496 (DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 1380-7501 nnns volume:81 year:2021 number:29 day:11 month:01 pages:41477-41496 https://doi.org/10.1007/s11042-020-10487-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW AR 81 2021 29 11 01 41477-41496 |
language |
English |
source |
Enthalten in Multimedia tools and applications 81(2021), 29 vom: 11. Jan., Seite 41477-41496 volume:81 year:2021 number:29 day:11 month:01 pages:41477-41496 |
sourceStr |
Enthalten in Multimedia tools and applications 81(2021), 29 vom: 11. Jan., Seite 41477-41496 volume:81 year:2021 number:29 day:11 month:01 pages:41477-41496 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Data standardization Histogram specification Grid search MRI Multicenter |
dewey-raw |
070 |
isfreeaccess_bool |
false |
container_title |
Multimedia tools and applications |
authorswithroles_txt_mv |
Zhao, Guohua @@aut@@ Bai, Jie @@aut@@ Yang, Guan @@aut@@ Shi, Lei @@aut@@ Tao, Yongcai @@aut@@ Cheng, Jingliang @@aut@@ Lin, Yusong @@aut@@ |
publishDateDaySort_date |
2021-01-11T00:00:00Z |
hierarchy_top_id |
189064145 |
dewey-sort |
270 |
id |
OLC2080057642 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2080057642</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506092736.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230131s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11042-020-10487-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2080057642</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11042-020-10487-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhao, Guohua</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-8813-8527</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Magnetic resonance imaging standardization for accurate grading of cerebral gliomas</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Computer-aided diagnosis has attracted attention for the accurate grading of cerebral glioma. Most algorithms are only effective in relatively large datasets. Although multicenter data sharing is expanding, the results of cerebral glioma grading are not promising for multicenter data. Considering that multicenter images differ in contrast, we propose an effective image standardization method to reduce the disparity in image contrast of different datasets. The method is adopted in multiple sets of comparative experiments on a public dataset (BraTS2017) and a local dataset. The classification accuracy of experimental data relative to that of multicenter data without image normalization is improved by approximately 25% on average. Results demonstrate that the proposed approach is effective in solving the image contrast disparity of multicenter data. It also addresses the challenge of limited effective sample size in accurate cerebral glioma grading. The novel image standardization technology proposed in this work is a promising solution that can be integrated into expert systems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data standardization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Histogram specification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Grid search</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MRI</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multicenter</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bai, Jie</subfield><subfield code="0">(orcid)0000-0002-7744-1117</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Guan</subfield><subfield code="0">(orcid)0000-0002-1659-2819</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Lei</subfield><subfield code="0">(orcid)0000-0002-0655-3971</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tao, Yongcai</subfield><subfield code="0">(orcid)0000-0003-3098-3960</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheng, Jingliang</subfield><subfield code="0">(orcid)0000-0001-9944-8419</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Yusong</subfield><subfield code="0">(orcid)0000-0002-2284-5763</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Multimedia tools and applications</subfield><subfield code="d">Springer US, 1995</subfield><subfield code="g">81(2021), 29 vom: 11. Jan., Seite 41477-41496</subfield><subfield code="w">(DE-627)189064145</subfield><subfield code="w">(DE-600)1287642-2</subfield><subfield code="w">(DE-576)052842126</subfield><subfield code="x">1380-7501</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:81</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:29</subfield><subfield code="g">day:11</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:41477-41496</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11042-020-10487-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-BUB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MKW</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">81</subfield><subfield code="j">2021</subfield><subfield code="e">29</subfield><subfield code="b">11</subfield><subfield code="c">01</subfield><subfield code="h">41477-41496</subfield></datafield></record></collection>
|
author |
Zhao, Guohua |
spellingShingle |
Zhao, Guohua ddc 070 misc Data standardization misc Histogram specification misc Grid search misc MRI misc Multicenter Magnetic resonance imaging standardization for accurate grading of cerebral gliomas |
authorStr |
Zhao, Guohua |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)189064145 |
format |
Article |
dewey-ones |
070 - News media, journalism & publishing 004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
1380-7501 |
topic_title |
070 004 VZ Magnetic resonance imaging standardization for accurate grading of cerebral gliomas Data standardization Histogram specification Grid search MRI Multicenter |
topic |
ddc 070 misc Data standardization misc Histogram specification misc Grid search misc MRI misc Multicenter |
topic_unstemmed |
ddc 070 misc Data standardization misc Histogram specification misc Grid search misc MRI misc Multicenter |
topic_browse |
ddc 070 misc Data standardization misc Histogram specification misc Grid search misc MRI misc Multicenter |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Multimedia tools and applications |
hierarchy_parent_id |
189064145 |
dewey-tens |
070 - News media, journalism & publishing 000 - Computer science, knowledge & systems |
hierarchy_top_title |
Multimedia tools and applications |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)189064145 (DE-600)1287642-2 (DE-576)052842126 |
title |
Magnetic resonance imaging standardization for accurate grading of cerebral gliomas |
ctrlnum |
(DE-627)OLC2080057642 (DE-He213)s11042-020-10487-3-p |
title_full |
Magnetic resonance imaging standardization for accurate grading of cerebral gliomas |
author_sort |
Zhao, Guohua |
journal |
Multimedia tools and applications |
journalStr |
Multimedia tools and applications |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2021 |
contenttype_str_mv |
txt |
container_start_page |
41477 |
author_browse |
Zhao, Guohua Bai, Jie Yang, Guan Shi, Lei Tao, Yongcai Cheng, Jingliang Lin, Yusong |
container_volume |
81 |
class |
070 004 VZ |
format_se |
Aufsätze |
author-letter |
Zhao, Guohua |
doi_str_mv |
10.1007/s11042-020-10487-3 |
normlink |
(ORCID)0000-0002-8813-8527 (ORCID)0000-0002-7744-1117 (ORCID)0000-0002-1659-2819 (ORCID)0000-0002-0655-3971 (ORCID)0000-0003-3098-3960 (ORCID)0000-0001-9944-8419 (ORCID)0000-0002-2284-5763 |
normlink_prefix_str_mv |
(orcid)0000-0002-8813-8527 (orcid)0000-0002-7744-1117 (orcid)0000-0002-1659-2819 (orcid)0000-0002-0655-3971 (orcid)0000-0003-3098-3960 (orcid)0000-0001-9944-8419 (orcid)0000-0002-2284-5763 |
dewey-full |
070 004 |
title_sort |
magnetic resonance imaging standardization for accurate grading of cerebral gliomas |
title_auth |
Magnetic resonance imaging standardization for accurate grading of cerebral gliomas |
abstract |
Abstract Computer-aided diagnosis has attracted attention for the accurate grading of cerebral glioma. Most algorithms are only effective in relatively large datasets. Although multicenter data sharing is expanding, the results of cerebral glioma grading are not promising for multicenter data. Considering that multicenter images differ in contrast, we propose an effective image standardization method to reduce the disparity in image contrast of different datasets. The method is adopted in multiple sets of comparative experiments on a public dataset (BraTS2017) and a local dataset. The classification accuracy of experimental data relative to that of multicenter data without image normalization is improved by approximately 25% on average. Results demonstrate that the proposed approach is effective in solving the image contrast disparity of multicenter data. It also addresses the challenge of limited effective sample size in accurate cerebral glioma grading. The novel image standardization technology proposed in this work is a promising solution that can be integrated into expert systems. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 |
abstractGer |
Abstract Computer-aided diagnosis has attracted attention for the accurate grading of cerebral glioma. Most algorithms are only effective in relatively large datasets. Although multicenter data sharing is expanding, the results of cerebral glioma grading are not promising for multicenter data. Considering that multicenter images differ in contrast, we propose an effective image standardization method to reduce the disparity in image contrast of different datasets. The method is adopted in multiple sets of comparative experiments on a public dataset (BraTS2017) and a local dataset. The classification accuracy of experimental data relative to that of multicenter data without image normalization is improved by approximately 25% on average. Results demonstrate that the proposed approach is effective in solving the image contrast disparity of multicenter data. It also addresses the challenge of limited effective sample size in accurate cerebral glioma grading. The novel image standardization technology proposed in this work is a promising solution that can be integrated into expert systems. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 |
abstract_unstemmed |
Abstract Computer-aided diagnosis has attracted attention for the accurate grading of cerebral glioma. Most algorithms are only effective in relatively large datasets. Although multicenter data sharing is expanding, the results of cerebral glioma grading are not promising for multicenter data. Considering that multicenter images differ in contrast, we propose an effective image standardization method to reduce the disparity in image contrast of different datasets. The method is adopted in multiple sets of comparative experiments on a public dataset (BraTS2017) and a local dataset. The classification accuracy of experimental data relative to that of multicenter data without image normalization is improved by approximately 25% on average. Results demonstrate that the proposed approach is effective in solving the image contrast disparity of multicenter data. It also addresses the challenge of limited effective sample size in accurate cerebral glioma grading. The novel image standardization technology proposed in this work is a promising solution that can be integrated into expert systems. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT SSG-OLC-BUB SSG-OLC-MKW |
container_issue |
29 |
title_short |
Magnetic resonance imaging standardization for accurate grading of cerebral gliomas |
url |
https://doi.org/10.1007/s11042-020-10487-3 |
remote_bool |
false |
author2 |
Bai, Jie Yang, Guan Shi, Lei Tao, Yongcai Cheng, Jingliang Lin, Yusong |
author2Str |
Bai, Jie Yang, Guan Shi, Lei Tao, Yongcai Cheng, Jingliang Lin, Yusong |
ppnlink |
189064145 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11042-020-10487-3 |
up_date |
2024-07-04T02:48:34.516Z |
_version_ |
1803615012929929216 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2080057642</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506092736.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230131s2021 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11042-020-10487-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2080057642</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11042-020-10487-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">070</subfield><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhao, Guohua</subfield><subfield code="e">verfasserin</subfield><subfield code="0">(orcid)0000-0002-8813-8527</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Magnetic resonance imaging standardization for accurate grading of cerebral gliomas</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2021</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC part of Springer Nature 2021</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Computer-aided diagnosis has attracted attention for the accurate grading of cerebral glioma. Most algorithms are only effective in relatively large datasets. Although multicenter data sharing is expanding, the results of cerebral glioma grading are not promising for multicenter data. Considering that multicenter images differ in contrast, we propose an effective image standardization method to reduce the disparity in image contrast of different datasets. The method is adopted in multiple sets of comparative experiments on a public dataset (BraTS2017) and a local dataset. The classification accuracy of experimental data relative to that of multicenter data without image normalization is improved by approximately 25% on average. Results demonstrate that the proposed approach is effective in solving the image contrast disparity of multicenter data. It also addresses the challenge of limited effective sample size in accurate cerebral glioma grading. The novel image standardization technology proposed in this work is a promising solution that can be integrated into expert systems.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Data standardization</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Histogram specification</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Grid search</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">MRI</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Multicenter</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Bai, Jie</subfield><subfield code="0">(orcid)0000-0002-7744-1117</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yang, Guan</subfield><subfield code="0">(orcid)0000-0002-1659-2819</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Shi, Lei</subfield><subfield code="0">(orcid)0000-0002-0655-3971</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Tao, Yongcai</subfield><subfield code="0">(orcid)0000-0003-3098-3960</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cheng, Jingliang</subfield><subfield code="0">(orcid)0000-0001-9944-8419</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Lin, Yusong</subfield><subfield code="0">(orcid)0000-0002-2284-5763</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Multimedia tools and applications</subfield><subfield code="d">Springer US, 1995</subfield><subfield code="g">81(2021), 29 vom: 11. Jan., Seite 41477-41496</subfield><subfield code="w">(DE-627)189064145</subfield><subfield code="w">(DE-600)1287642-2</subfield><subfield code="w">(DE-576)052842126</subfield><subfield code="x">1380-7501</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:81</subfield><subfield code="g">year:2021</subfield><subfield code="g">number:29</subfield><subfield code="g">day:11</subfield><subfield code="g">month:01</subfield><subfield code="g">pages:41477-41496</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11042-020-10487-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-BUB</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MKW</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">81</subfield><subfield code="j">2021</subfield><subfield code="e">29</subfield><subfield code="b">11</subfield><subfield code="c">01</subfield><subfield code="h">41477-41496</subfield></datafield></record></collection>
|
score |
7.401326 |