Firing mechanism based on single memristive neuron and double memristive coupled neurons
Abstract Memristive neurons and memristive neural networks constructed based on memristors have important research significance for revealing the mystery of the brain. This paper proposes a compound hyperbolic tangent cubic nonlinear memristor, which has nonvolatile memory characteristics and local...
Ausführliche Beschreibung
Autor*in: |
Shen, Hui [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
---|
Übergeordnetes Werk: |
Enthalten in: Nonlinear dynamics - Springer Netherlands, 1990, 110(2022), 4 vom: 27. Aug., Seite 3807-3822 |
---|---|
Übergeordnetes Werk: |
volume:110 ; year:2022 ; number:4 ; day:27 ; month:08 ; pages:3807-3822 |
Links: |
---|
DOI / URN: |
10.1007/s11071-022-07812-w |
---|
Katalog-ID: |
OLC2080095048 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2080095048 | ||
003 | DE-627 | ||
005 | 20230507080714.0 | ||
007 | tu | ||
008 | 230131s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s11071-022-07812-w |2 doi | |
035 | |a (DE-627)OLC2080095048 | ||
035 | |a (DE-He213)s11071-022-07812-w-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 510 |q VZ |
084 | |a 11 |2 ssgn | ||
100 | 1 | |a Shen, Hui |e verfasserin |4 aut | |
245 | 1 | 0 | |a Firing mechanism based on single memristive neuron and double memristive coupled neurons |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. | ||
520 | |a Abstract Memristive neurons and memristive neural networks constructed based on memristors have important research significance for revealing the mystery of the brain. This paper proposes a compound hyperbolic tangent cubic nonlinear memristor, which has nonvolatile memory characteristics and local activity characteristics. In particular, the memristor also has three stable pinched hysteresis loops under different initial values. The memristor is applied to Fitzhugh–Nagumo neuron and Hindmarsh–Rose neuron to establish five different memristive neural models, and a series of firing dynamics analysis are carried out on them. At the same time, we not only discuss multiple firing patterns on a single memristive neuron and double memristive coupled neurons, but also compare which neuron and which coupled neural network the proposed memristor is more suitable for, which is a lack of comprehensive investigation in the published research. Furthermore, digital circuit experiment is performed on the FPGA development board to verify the firing mechanism of these memristive neural models, which has potential application value for some practical projects. | ||
650 | 4 | |a Memristor | |
650 | 4 | |a Fitzhugh–Nagumo (FN) neuron | |
650 | 4 | |a Hindmarsh–Rose (HR) neuron | |
650 | 4 | |a Coupling | |
650 | 4 | |a Firing | |
650 | 4 | |a FPGA | |
700 | 1 | |a Yu, Fei |0 (orcid)0000-0002-3091-7640 |4 aut | |
700 | 1 | |a Wang, Chunhua |4 aut | |
700 | 1 | |a Sun, Jingru |4 aut | |
700 | 1 | |a Cai, Shuo |0 (orcid)0000-0003-4375-3187 |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Nonlinear dynamics |d Springer Netherlands, 1990 |g 110(2022), 4 vom: 27. Aug., Seite 3807-3822 |w (DE-627)130936782 |w (DE-600)1058624-6 |w (DE-576)034188126 |x 0924-090X |7 nnns |
773 | 1 | 8 | |g volume:110 |g year:2022 |g number:4 |g day:27 |g month:08 |g pages:3807-3822 |
856 | 4 | 1 | |u https://doi.org/10.1007/s11071-022-07812-w |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-TEC | ||
912 | |a SSG-OLC-PHY | ||
912 | |a SSG-OLC-CHE | ||
912 | |a SSG-OLC-MAT | ||
912 | |a SSG-OLC-PHA | ||
912 | |a SSG-OLC-DE-84 | ||
912 | |a SSG-OPC-MAT | ||
951 | |a AR | ||
952 | |d 110 |j 2022 |e 4 |b 27 |c 08 |h 3807-3822 |
author_variant |
h s hs f y fy c w cw j s js s c sc |
---|---|
matchkey_str |
article:0924090X:2022----::iigehnsbsdnigeersieernndulmm |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s11071-022-07812-w doi (DE-627)OLC2080095048 (DE-He213)s11071-022-07812-w-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Shen, Hui verfasserin aut Firing mechanism based on single memristive neuron and double memristive coupled neurons 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Memristive neurons and memristive neural networks constructed based on memristors have important research significance for revealing the mystery of the brain. This paper proposes a compound hyperbolic tangent cubic nonlinear memristor, which has nonvolatile memory characteristics and local activity characteristics. In particular, the memristor also has three stable pinched hysteresis loops under different initial values. The memristor is applied to Fitzhugh–Nagumo neuron and Hindmarsh–Rose neuron to establish five different memristive neural models, and a series of firing dynamics analysis are carried out on them. At the same time, we not only discuss multiple firing patterns on a single memristive neuron and double memristive coupled neurons, but also compare which neuron and which coupled neural network the proposed memristor is more suitable for, which is a lack of comprehensive investigation in the published research. Furthermore, digital circuit experiment is performed on the FPGA development board to verify the firing mechanism of these memristive neural models, which has potential application value for some practical projects. Memristor Fitzhugh–Nagumo (FN) neuron Hindmarsh–Rose (HR) neuron Coupling Firing FPGA Yu, Fei (orcid)0000-0002-3091-7640 aut Wang, Chunhua aut Sun, Jingru aut Cai, Shuo (orcid)0000-0003-4375-3187 aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 110(2022), 4 vom: 27. Aug., Seite 3807-3822 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:110 year:2022 number:4 day:27 month:08 pages:3807-3822 https://doi.org/10.1007/s11071-022-07812-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT AR 110 2022 4 27 08 3807-3822 |
spelling |
10.1007/s11071-022-07812-w doi (DE-627)OLC2080095048 (DE-He213)s11071-022-07812-w-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Shen, Hui verfasserin aut Firing mechanism based on single memristive neuron and double memristive coupled neurons 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Memristive neurons and memristive neural networks constructed based on memristors have important research significance for revealing the mystery of the brain. This paper proposes a compound hyperbolic tangent cubic nonlinear memristor, which has nonvolatile memory characteristics and local activity characteristics. In particular, the memristor also has three stable pinched hysteresis loops under different initial values. The memristor is applied to Fitzhugh–Nagumo neuron and Hindmarsh–Rose neuron to establish five different memristive neural models, and a series of firing dynamics analysis are carried out on them. At the same time, we not only discuss multiple firing patterns on a single memristive neuron and double memristive coupled neurons, but also compare which neuron and which coupled neural network the proposed memristor is more suitable for, which is a lack of comprehensive investigation in the published research. Furthermore, digital circuit experiment is performed on the FPGA development board to verify the firing mechanism of these memristive neural models, which has potential application value for some practical projects. Memristor Fitzhugh–Nagumo (FN) neuron Hindmarsh–Rose (HR) neuron Coupling Firing FPGA Yu, Fei (orcid)0000-0002-3091-7640 aut Wang, Chunhua aut Sun, Jingru aut Cai, Shuo (orcid)0000-0003-4375-3187 aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 110(2022), 4 vom: 27. Aug., Seite 3807-3822 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:110 year:2022 number:4 day:27 month:08 pages:3807-3822 https://doi.org/10.1007/s11071-022-07812-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT AR 110 2022 4 27 08 3807-3822 |
allfields_unstemmed |
10.1007/s11071-022-07812-w doi (DE-627)OLC2080095048 (DE-He213)s11071-022-07812-w-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Shen, Hui verfasserin aut Firing mechanism based on single memristive neuron and double memristive coupled neurons 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Memristive neurons and memristive neural networks constructed based on memristors have important research significance for revealing the mystery of the brain. This paper proposes a compound hyperbolic tangent cubic nonlinear memristor, which has nonvolatile memory characteristics and local activity characteristics. In particular, the memristor also has three stable pinched hysteresis loops under different initial values. The memristor is applied to Fitzhugh–Nagumo neuron and Hindmarsh–Rose neuron to establish five different memristive neural models, and a series of firing dynamics analysis are carried out on them. At the same time, we not only discuss multiple firing patterns on a single memristive neuron and double memristive coupled neurons, but also compare which neuron and which coupled neural network the proposed memristor is more suitable for, which is a lack of comprehensive investigation in the published research. Furthermore, digital circuit experiment is performed on the FPGA development board to verify the firing mechanism of these memristive neural models, which has potential application value for some practical projects. Memristor Fitzhugh–Nagumo (FN) neuron Hindmarsh–Rose (HR) neuron Coupling Firing FPGA Yu, Fei (orcid)0000-0002-3091-7640 aut Wang, Chunhua aut Sun, Jingru aut Cai, Shuo (orcid)0000-0003-4375-3187 aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 110(2022), 4 vom: 27. Aug., Seite 3807-3822 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:110 year:2022 number:4 day:27 month:08 pages:3807-3822 https://doi.org/10.1007/s11071-022-07812-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT AR 110 2022 4 27 08 3807-3822 |
allfieldsGer |
10.1007/s11071-022-07812-w doi (DE-627)OLC2080095048 (DE-He213)s11071-022-07812-w-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Shen, Hui verfasserin aut Firing mechanism based on single memristive neuron and double memristive coupled neurons 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Memristive neurons and memristive neural networks constructed based on memristors have important research significance for revealing the mystery of the brain. This paper proposes a compound hyperbolic tangent cubic nonlinear memristor, which has nonvolatile memory characteristics and local activity characteristics. In particular, the memristor also has three stable pinched hysteresis loops under different initial values. The memristor is applied to Fitzhugh–Nagumo neuron and Hindmarsh–Rose neuron to establish five different memristive neural models, and a series of firing dynamics analysis are carried out on them. At the same time, we not only discuss multiple firing patterns on a single memristive neuron and double memristive coupled neurons, but also compare which neuron and which coupled neural network the proposed memristor is more suitable for, which is a lack of comprehensive investigation in the published research. Furthermore, digital circuit experiment is performed on the FPGA development board to verify the firing mechanism of these memristive neural models, which has potential application value for some practical projects. Memristor Fitzhugh–Nagumo (FN) neuron Hindmarsh–Rose (HR) neuron Coupling Firing FPGA Yu, Fei (orcid)0000-0002-3091-7640 aut Wang, Chunhua aut Sun, Jingru aut Cai, Shuo (orcid)0000-0003-4375-3187 aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 110(2022), 4 vom: 27. Aug., Seite 3807-3822 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:110 year:2022 number:4 day:27 month:08 pages:3807-3822 https://doi.org/10.1007/s11071-022-07812-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT AR 110 2022 4 27 08 3807-3822 |
allfieldsSound |
10.1007/s11071-022-07812-w doi (DE-627)OLC2080095048 (DE-He213)s11071-022-07812-w-p DE-627 ger DE-627 rakwb eng 510 VZ 11 ssgn Shen, Hui verfasserin aut Firing mechanism based on single memristive neuron and double memristive coupled neurons 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. Abstract Memristive neurons and memristive neural networks constructed based on memristors have important research significance for revealing the mystery of the brain. This paper proposes a compound hyperbolic tangent cubic nonlinear memristor, which has nonvolatile memory characteristics and local activity characteristics. In particular, the memristor also has three stable pinched hysteresis loops under different initial values. The memristor is applied to Fitzhugh–Nagumo neuron and Hindmarsh–Rose neuron to establish five different memristive neural models, and a series of firing dynamics analysis are carried out on them. At the same time, we not only discuss multiple firing patterns on a single memristive neuron and double memristive coupled neurons, but also compare which neuron and which coupled neural network the proposed memristor is more suitable for, which is a lack of comprehensive investigation in the published research. Furthermore, digital circuit experiment is performed on the FPGA development board to verify the firing mechanism of these memristive neural models, which has potential application value for some practical projects. Memristor Fitzhugh–Nagumo (FN) neuron Hindmarsh–Rose (HR) neuron Coupling Firing FPGA Yu, Fei (orcid)0000-0002-3091-7640 aut Wang, Chunhua aut Sun, Jingru aut Cai, Shuo (orcid)0000-0003-4375-3187 aut Enthalten in Nonlinear dynamics Springer Netherlands, 1990 110(2022), 4 vom: 27. Aug., Seite 3807-3822 (DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 0924-090X nnns volume:110 year:2022 number:4 day:27 month:08 pages:3807-3822 https://doi.org/10.1007/s11071-022-07812-w lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT AR 110 2022 4 27 08 3807-3822 |
language |
English |
source |
Enthalten in Nonlinear dynamics 110(2022), 4 vom: 27. Aug., Seite 3807-3822 volume:110 year:2022 number:4 day:27 month:08 pages:3807-3822 |
sourceStr |
Enthalten in Nonlinear dynamics 110(2022), 4 vom: 27. Aug., Seite 3807-3822 volume:110 year:2022 number:4 day:27 month:08 pages:3807-3822 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Memristor Fitzhugh–Nagumo (FN) neuron Hindmarsh–Rose (HR) neuron Coupling Firing FPGA |
dewey-raw |
510 |
isfreeaccess_bool |
false |
container_title |
Nonlinear dynamics |
authorswithroles_txt_mv |
Shen, Hui @@aut@@ Yu, Fei @@aut@@ Wang, Chunhua @@aut@@ Sun, Jingru @@aut@@ Cai, Shuo @@aut@@ |
publishDateDaySort_date |
2022-08-27T00:00:00Z |
hierarchy_top_id |
130936782 |
dewey-sort |
3510 |
id |
OLC2080095048 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2080095048</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507080714.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230131s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11071-022-07812-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2080095048</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11071-022-07812-w-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shen, Hui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Firing mechanism based on single memristive neuron and double memristive coupled neurons</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Memristive neurons and memristive neural networks constructed based on memristors have important research significance for revealing the mystery of the brain. This paper proposes a compound hyperbolic tangent cubic nonlinear memristor, which has nonvolatile memory characteristics and local activity characteristics. In particular, the memristor also has three stable pinched hysteresis loops under different initial values. The memristor is applied to Fitzhugh–Nagumo neuron and Hindmarsh–Rose neuron to establish five different memristive neural models, and a series of firing dynamics analysis are carried out on them. At the same time, we not only discuss multiple firing patterns on a single memristive neuron and double memristive coupled neurons, but also compare which neuron and which coupled neural network the proposed memristor is more suitable for, which is a lack of comprehensive investigation in the published research. Furthermore, digital circuit experiment is performed on the FPGA development board to verify the firing mechanism of these memristive neural models, which has potential application value for some practical projects.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Memristor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fitzhugh–Nagumo (FN) neuron</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hindmarsh–Rose (HR) neuron</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coupling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Firing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FPGA</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Fei</subfield><subfield code="0">(orcid)0000-0002-3091-7640</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Chunhua</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Jingru</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cai, Shuo</subfield><subfield code="0">(orcid)0000-0003-4375-3187</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nonlinear dynamics</subfield><subfield code="d">Springer Netherlands, 1990</subfield><subfield code="g">110(2022), 4 vom: 27. Aug., Seite 3807-3822</subfield><subfield code="w">(DE-627)130936782</subfield><subfield code="w">(DE-600)1058624-6</subfield><subfield code="w">(DE-576)034188126</subfield><subfield code="x">0924-090X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:110</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4</subfield><subfield code="g">day:27</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:3807-3822</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11071-022-07812-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">110</subfield><subfield code="j">2022</subfield><subfield code="e">4</subfield><subfield code="b">27</subfield><subfield code="c">08</subfield><subfield code="h">3807-3822</subfield></datafield></record></collection>
|
author |
Shen, Hui |
spellingShingle |
Shen, Hui ddc 510 ssgn 11 misc Memristor misc Fitzhugh–Nagumo (FN) neuron misc Hindmarsh–Rose (HR) neuron misc Coupling misc Firing misc FPGA Firing mechanism based on single memristive neuron and double memristive coupled neurons |
authorStr |
Shen, Hui |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130936782 |
format |
Article |
dewey-ones |
510 - Mathematics |
delete_txt_mv |
keep |
author_role |
aut aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0924-090X |
topic_title |
510 VZ 11 ssgn Firing mechanism based on single memristive neuron and double memristive coupled neurons Memristor Fitzhugh–Nagumo (FN) neuron Hindmarsh–Rose (HR) neuron Coupling Firing FPGA |
topic |
ddc 510 ssgn 11 misc Memristor misc Fitzhugh–Nagumo (FN) neuron misc Hindmarsh–Rose (HR) neuron misc Coupling misc Firing misc FPGA |
topic_unstemmed |
ddc 510 ssgn 11 misc Memristor misc Fitzhugh–Nagumo (FN) neuron misc Hindmarsh–Rose (HR) neuron misc Coupling misc Firing misc FPGA |
topic_browse |
ddc 510 ssgn 11 misc Memristor misc Fitzhugh–Nagumo (FN) neuron misc Hindmarsh–Rose (HR) neuron misc Coupling misc Firing misc FPGA |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Nonlinear dynamics |
hierarchy_parent_id |
130936782 |
dewey-tens |
510 - Mathematics |
hierarchy_top_title |
Nonlinear dynamics |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130936782 (DE-600)1058624-6 (DE-576)034188126 |
title |
Firing mechanism based on single memristive neuron and double memristive coupled neurons |
ctrlnum |
(DE-627)OLC2080095048 (DE-He213)s11071-022-07812-w-p |
title_full |
Firing mechanism based on single memristive neuron and double memristive coupled neurons |
author_sort |
Shen, Hui |
journal |
Nonlinear dynamics |
journalStr |
Nonlinear dynamics |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
500 - Science |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
3807 |
author_browse |
Shen, Hui Yu, Fei Wang, Chunhua Sun, Jingru Cai, Shuo |
container_volume |
110 |
class |
510 VZ 11 ssgn |
format_se |
Aufsätze |
author-letter |
Shen, Hui |
doi_str_mv |
10.1007/s11071-022-07812-w |
normlink |
(ORCID)0000-0002-3091-7640 (ORCID)0000-0003-4375-3187 |
normlink_prefix_str_mv |
(orcid)0000-0002-3091-7640 (orcid)0000-0003-4375-3187 |
dewey-full |
510 |
title_sort |
firing mechanism based on single memristive neuron and double memristive coupled neurons |
title_auth |
Firing mechanism based on single memristive neuron and double memristive coupled neurons |
abstract |
Abstract Memristive neurons and memristive neural networks constructed based on memristors have important research significance for revealing the mystery of the brain. This paper proposes a compound hyperbolic tangent cubic nonlinear memristor, which has nonvolatile memory characteristics and local activity characteristics. In particular, the memristor also has three stable pinched hysteresis loops under different initial values. The memristor is applied to Fitzhugh–Nagumo neuron and Hindmarsh–Rose neuron to establish five different memristive neural models, and a series of firing dynamics analysis are carried out on them. At the same time, we not only discuss multiple firing patterns on a single memristive neuron and double memristive coupled neurons, but also compare which neuron and which coupled neural network the proposed memristor is more suitable for, which is a lack of comprehensive investigation in the published research. Furthermore, digital circuit experiment is performed on the FPGA development board to verify the firing mechanism of these memristive neural models, which has potential application value for some practical projects. © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstractGer |
Abstract Memristive neurons and memristive neural networks constructed based on memristors have important research significance for revealing the mystery of the brain. This paper proposes a compound hyperbolic tangent cubic nonlinear memristor, which has nonvolatile memory characteristics and local activity characteristics. In particular, the memristor also has three stable pinched hysteresis loops under different initial values. The memristor is applied to Fitzhugh–Nagumo neuron and Hindmarsh–Rose neuron to establish five different memristive neural models, and a series of firing dynamics analysis are carried out on them. At the same time, we not only discuss multiple firing patterns on a single memristive neuron and double memristive coupled neurons, but also compare which neuron and which coupled neural network the proposed memristor is more suitable for, which is a lack of comprehensive investigation in the published research. Furthermore, digital circuit experiment is performed on the FPGA development board to verify the firing mechanism of these memristive neural models, which has potential application value for some practical projects. © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
abstract_unstemmed |
Abstract Memristive neurons and memristive neural networks constructed based on memristors have important research significance for revealing the mystery of the brain. This paper proposes a compound hyperbolic tangent cubic nonlinear memristor, which has nonvolatile memory characteristics and local activity characteristics. In particular, the memristor also has three stable pinched hysteresis loops under different initial values. The memristor is applied to Fitzhugh–Nagumo neuron and Hindmarsh–Rose neuron to establish five different memristive neural models, and a series of firing dynamics analysis are carried out on them. At the same time, we not only discuss multiple firing patterns on a single memristive neuron and double memristive coupled neurons, but also compare which neuron and which coupled neural network the proposed memristor is more suitable for, which is a lack of comprehensive investigation in the published research. Furthermore, digital circuit experiment is performed on the FPGA development board to verify the firing mechanism of these memristive neural models, which has potential application value for some practical projects. © The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law. |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-TEC SSG-OLC-PHY SSG-OLC-CHE SSG-OLC-MAT SSG-OLC-PHA SSG-OLC-DE-84 SSG-OPC-MAT |
container_issue |
4 |
title_short |
Firing mechanism based on single memristive neuron and double memristive coupled neurons |
url |
https://doi.org/10.1007/s11071-022-07812-w |
remote_bool |
false |
author2 |
Yu, Fei Wang, Chunhua Sun, Jingru Cai, Shuo |
author2Str |
Yu, Fei Wang, Chunhua Sun, Jingru Cai, Shuo |
ppnlink |
130936782 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s11071-022-07812-w |
up_date |
2024-07-04T02:54:50.286Z |
_version_ |
1803615406974304256 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2080095048</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230507080714.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230131s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s11071-022-07812-w</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2080095048</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s11071-022-07812-w-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">510</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="084" ind1=" " ind2=" "><subfield code="a">11</subfield><subfield code="2">ssgn</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Shen, Hui</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Firing mechanism based on single memristive neuron and double memristive coupled neurons</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Nature B.V. 2022. Springer Nature or its licensor holds exclusive rights to this article under a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted manuscript version of this article is solely governed by the terms of such publishing agreement and applicable law.</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Memristive neurons and memristive neural networks constructed based on memristors have important research significance for revealing the mystery of the brain. This paper proposes a compound hyperbolic tangent cubic nonlinear memristor, which has nonvolatile memory characteristics and local activity characteristics. In particular, the memristor also has three stable pinched hysteresis loops under different initial values. The memristor is applied to Fitzhugh–Nagumo neuron and Hindmarsh–Rose neuron to establish five different memristive neural models, and a series of firing dynamics analysis are carried out on them. At the same time, we not only discuss multiple firing patterns on a single memristive neuron and double memristive coupled neurons, but also compare which neuron and which coupled neural network the proposed memristor is more suitable for, which is a lack of comprehensive investigation in the published research. Furthermore, digital circuit experiment is performed on the FPGA development board to verify the firing mechanism of these memristive neural models, which has potential application value for some practical projects.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Memristor</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Fitzhugh–Nagumo (FN) neuron</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Hindmarsh–Rose (HR) neuron</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Coupling</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Firing</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">FPGA</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Yu, Fei</subfield><subfield code="0">(orcid)0000-0002-3091-7640</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Wang, Chunhua</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Sun, Jingru</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Cai, Shuo</subfield><subfield code="0">(orcid)0000-0003-4375-3187</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Nonlinear dynamics</subfield><subfield code="d">Springer Netherlands, 1990</subfield><subfield code="g">110(2022), 4 vom: 27. Aug., Seite 3807-3822</subfield><subfield code="w">(DE-627)130936782</subfield><subfield code="w">(DE-600)1058624-6</subfield><subfield code="w">(DE-576)034188126</subfield><subfield code="x">0924-090X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:110</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:4</subfield><subfield code="g">day:27</subfield><subfield code="g">month:08</subfield><subfield code="g">pages:3807-3822</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s11071-022-07812-w</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-TEC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHY</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-CHE</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-PHA</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-DE-84</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OPC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">110</subfield><subfield code="j">2022</subfield><subfield code="e">4</subfield><subfield code="b">27</subfield><subfield code="c">08</subfield><subfield code="h">3807-3822</subfield></datafield></record></collection>
|
score |
7.402135 |