Multi-match: mutual information maximization and CutEdge for semi-supervised learning

Abstract Deep supervised learning has achieved great successes in tackling complex computer vision tasks. However, it typically requires a large amount of data with labels and is expensive in practical applications. Semi-supervised learning, which leverages the hidden structures learned from unlabel...
Ausführliche Beschreibung

Gespeichert in:
Autor*in:

Wu, Yulin [verfasserIn]

Chen, Lei

Zhao, Dong

Zhou, Hongchao

Zheng, Qinghe

Format:

Artikel

Sprache:

Englisch

Erschienen:

2022

Schlagwörter:

Semi-supervised learning

Multi-Match

Mutual information

CutEdge

Multiple branches

Anmerkung:

© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022

Übergeordnetes Werk:

Enthalten in: Multimedia tools and applications - Springer US, 1995, 82(2022), 1 vom: 07. Juni, Seite 479-496

Übergeordnetes Werk:

volume:82 ; year:2022 ; number:1 ; day:07 ; month:06 ; pages:479-496

Links:

Volltext

DOI / URN:

10.1007/s11042-022-13126-1

Katalog-ID:

OLC2080198467

Nicht das Richtige dabei?

Schreiben Sie uns!