Optimized segmentation with image inpainting for semantic mapping in dynamic scenes
Abstract Moving objects will obscure static objects in a dynamic scene. When the existing semantic segmentation methods deal with these static objects, there are often missing or errors in segmentation results. To solve this problem, we propose a framework that combines image inpainting and semantic...
Ausführliche Beschreibung
Autor*in: |
Zhang, Jianfeng [verfasserIn] |
---|
Format: |
Artikel |
---|---|
Sprache: |
Englisch |
Erschienen: |
2022 |
---|
Schlagwörter: |
---|
Anmerkung: |
© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
---|
Übergeordnetes Werk: |
Enthalten in: Applied intelligence - Springer US, 1991, 53(2022), 2 vom: 05. Mai, Seite 2173-2188 |
---|---|
Übergeordnetes Werk: |
volume:53 ; year:2022 ; number:2 ; day:05 ; month:05 ; pages:2173-2188 |
Links: |
---|
DOI / URN: |
10.1007/s10489-022-03487-3 |
---|
Katalog-ID: |
OLC2080215647 |
---|
LEADER | 01000caa a22002652 4500 | ||
---|---|---|---|
001 | OLC2080215647 | ||
003 | DE-627 | ||
005 | 20230506143734.0 | ||
007 | tu | ||
008 | 230131s2022 xx ||||| 00| ||eng c | ||
024 | 7 | |a 10.1007/s10489-022-03487-3 |2 doi | |
035 | |a (DE-627)OLC2080215647 | ||
035 | |a (DE-He213)s10489-022-03487-3-p | ||
040 | |a DE-627 |b ger |c DE-627 |e rakwb | ||
041 | |a eng | ||
082 | 0 | 4 | |a 004 |q VZ |
100 | 1 | |a Zhang, Jianfeng |e verfasserin |4 aut | |
245 | 1 | 0 | |a Optimized segmentation with image inpainting for semantic mapping in dynamic scenes |
264 | 1 | |c 2022 | |
336 | |a Text |b txt |2 rdacontent | ||
337 | |a ohne Hilfsmittel zu benutzen |b n |2 rdamedia | ||
338 | |a Band |b nc |2 rdacarrier | ||
500 | |a © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 | ||
520 | |a Abstract Moving objects will obscure static objects in a dynamic scene. When the existing semantic segmentation methods deal with these static objects, there are often missing or errors in segmentation results. To solve this problem, we propose a framework that combines image inpainting and semantic segmentation, termed SIS. Our framework adds an image inpainting network and an identical semantic segmentation network in series following an original semantic segmentation network, which can make full use of the two semantic segmentation results to obtain the optimized semantic segmentation results in this scene. Moreover, we combined our framework with Simultaneous Localization and Mapping (SLAM), and conducted experiments on the TUM RGB-D dataset. Experimental results show, the combined SLAM system can construct a semantic octree map with more complete and stable semantic information in dynamic scenes. | ||
650 | 4 | |a Semantic segmentation | |
650 | 4 | |a Image inpainting | |
650 | 4 | |a Semantic mapping | |
650 | 4 | |a Dynamic scenes | |
650 | 4 | |a Visual SLAM | |
700 | 1 | |a Liu, Yang |4 aut | |
700 | 1 | |a Guo, Chi |4 aut | |
700 | 1 | |a Zhan, Jiao |4 aut | |
773 | 0 | 8 | |i Enthalten in |t Applied intelligence |d Springer US, 1991 |g 53(2022), 2 vom: 05. Mai, Seite 2173-2188 |w (DE-627)130990515 |w (DE-600)1080229-0 |w (DE-576)029154286 |x 0924-669X |7 nnns |
773 | 1 | 8 | |g volume:53 |g year:2022 |g number:2 |g day:05 |g month:05 |g pages:2173-2188 |
856 | 4 | 1 | |u https://doi.org/10.1007/s10489-022-03487-3 |z lizenzpflichtig |3 Volltext |
912 | |a GBV_USEFLAG_A | ||
912 | |a SYSFLAG_A | ||
912 | |a GBV_OLC | ||
912 | |a SSG-OLC-MAT | ||
951 | |a AR | ||
952 | |d 53 |j 2022 |e 2 |b 05 |c 05 |h 2173-2188 |
author_variant |
j z jz y l yl c g cg j z jz |
---|---|
matchkey_str |
article:0924669X:2022----::piiesgettowtiaenanigosmnimp |
hierarchy_sort_str |
2022 |
publishDate |
2022 |
allfields |
10.1007/s10489-022-03487-3 doi (DE-627)OLC2080215647 (DE-He213)s10489-022-03487-3-p DE-627 ger DE-627 rakwb eng 004 VZ Zhang, Jianfeng verfasserin aut Optimized segmentation with image inpainting for semantic mapping in dynamic scenes 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract Moving objects will obscure static objects in a dynamic scene. When the existing semantic segmentation methods deal with these static objects, there are often missing or errors in segmentation results. To solve this problem, we propose a framework that combines image inpainting and semantic segmentation, termed SIS. Our framework adds an image inpainting network and an identical semantic segmentation network in series following an original semantic segmentation network, which can make full use of the two semantic segmentation results to obtain the optimized semantic segmentation results in this scene. Moreover, we combined our framework with Simultaneous Localization and Mapping (SLAM), and conducted experiments on the TUM RGB-D dataset. Experimental results show, the combined SLAM system can construct a semantic octree map with more complete and stable semantic information in dynamic scenes. Semantic segmentation Image inpainting Semantic mapping Dynamic scenes Visual SLAM Liu, Yang aut Guo, Chi aut Zhan, Jiao aut Enthalten in Applied intelligence Springer US, 1991 53(2022), 2 vom: 05. Mai, Seite 2173-2188 (DE-627)130990515 (DE-600)1080229-0 (DE-576)029154286 0924-669X nnns volume:53 year:2022 number:2 day:05 month:05 pages:2173-2188 https://doi.org/10.1007/s10489-022-03487-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT AR 53 2022 2 05 05 2173-2188 |
spelling |
10.1007/s10489-022-03487-3 doi (DE-627)OLC2080215647 (DE-He213)s10489-022-03487-3-p DE-627 ger DE-627 rakwb eng 004 VZ Zhang, Jianfeng verfasserin aut Optimized segmentation with image inpainting for semantic mapping in dynamic scenes 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract Moving objects will obscure static objects in a dynamic scene. When the existing semantic segmentation methods deal with these static objects, there are often missing or errors in segmentation results. To solve this problem, we propose a framework that combines image inpainting and semantic segmentation, termed SIS. Our framework adds an image inpainting network and an identical semantic segmentation network in series following an original semantic segmentation network, which can make full use of the two semantic segmentation results to obtain the optimized semantic segmentation results in this scene. Moreover, we combined our framework with Simultaneous Localization and Mapping (SLAM), and conducted experiments on the TUM RGB-D dataset. Experimental results show, the combined SLAM system can construct a semantic octree map with more complete and stable semantic information in dynamic scenes. Semantic segmentation Image inpainting Semantic mapping Dynamic scenes Visual SLAM Liu, Yang aut Guo, Chi aut Zhan, Jiao aut Enthalten in Applied intelligence Springer US, 1991 53(2022), 2 vom: 05. Mai, Seite 2173-2188 (DE-627)130990515 (DE-600)1080229-0 (DE-576)029154286 0924-669X nnns volume:53 year:2022 number:2 day:05 month:05 pages:2173-2188 https://doi.org/10.1007/s10489-022-03487-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT AR 53 2022 2 05 05 2173-2188 |
allfields_unstemmed |
10.1007/s10489-022-03487-3 doi (DE-627)OLC2080215647 (DE-He213)s10489-022-03487-3-p DE-627 ger DE-627 rakwb eng 004 VZ Zhang, Jianfeng verfasserin aut Optimized segmentation with image inpainting for semantic mapping in dynamic scenes 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract Moving objects will obscure static objects in a dynamic scene. When the existing semantic segmentation methods deal with these static objects, there are often missing or errors in segmentation results. To solve this problem, we propose a framework that combines image inpainting and semantic segmentation, termed SIS. Our framework adds an image inpainting network and an identical semantic segmentation network in series following an original semantic segmentation network, which can make full use of the two semantic segmentation results to obtain the optimized semantic segmentation results in this scene. Moreover, we combined our framework with Simultaneous Localization and Mapping (SLAM), and conducted experiments on the TUM RGB-D dataset. Experimental results show, the combined SLAM system can construct a semantic octree map with more complete and stable semantic information in dynamic scenes. Semantic segmentation Image inpainting Semantic mapping Dynamic scenes Visual SLAM Liu, Yang aut Guo, Chi aut Zhan, Jiao aut Enthalten in Applied intelligence Springer US, 1991 53(2022), 2 vom: 05. Mai, Seite 2173-2188 (DE-627)130990515 (DE-600)1080229-0 (DE-576)029154286 0924-669X nnns volume:53 year:2022 number:2 day:05 month:05 pages:2173-2188 https://doi.org/10.1007/s10489-022-03487-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT AR 53 2022 2 05 05 2173-2188 |
allfieldsGer |
10.1007/s10489-022-03487-3 doi (DE-627)OLC2080215647 (DE-He213)s10489-022-03487-3-p DE-627 ger DE-627 rakwb eng 004 VZ Zhang, Jianfeng verfasserin aut Optimized segmentation with image inpainting for semantic mapping in dynamic scenes 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract Moving objects will obscure static objects in a dynamic scene. When the existing semantic segmentation methods deal with these static objects, there are often missing or errors in segmentation results. To solve this problem, we propose a framework that combines image inpainting and semantic segmentation, termed SIS. Our framework adds an image inpainting network and an identical semantic segmentation network in series following an original semantic segmentation network, which can make full use of the two semantic segmentation results to obtain the optimized semantic segmentation results in this scene. Moreover, we combined our framework with Simultaneous Localization and Mapping (SLAM), and conducted experiments on the TUM RGB-D dataset. Experimental results show, the combined SLAM system can construct a semantic octree map with more complete and stable semantic information in dynamic scenes. Semantic segmentation Image inpainting Semantic mapping Dynamic scenes Visual SLAM Liu, Yang aut Guo, Chi aut Zhan, Jiao aut Enthalten in Applied intelligence Springer US, 1991 53(2022), 2 vom: 05. Mai, Seite 2173-2188 (DE-627)130990515 (DE-600)1080229-0 (DE-576)029154286 0924-669X nnns volume:53 year:2022 number:2 day:05 month:05 pages:2173-2188 https://doi.org/10.1007/s10489-022-03487-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT AR 53 2022 2 05 05 2173-2188 |
allfieldsSound |
10.1007/s10489-022-03487-3 doi (DE-627)OLC2080215647 (DE-He213)s10489-022-03487-3-p DE-627 ger DE-627 rakwb eng 004 VZ Zhang, Jianfeng verfasserin aut Optimized segmentation with image inpainting for semantic mapping in dynamic scenes 2022 Text txt rdacontent ohne Hilfsmittel zu benutzen n rdamedia Band nc rdacarrier © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 Abstract Moving objects will obscure static objects in a dynamic scene. When the existing semantic segmentation methods deal with these static objects, there are often missing or errors in segmentation results. To solve this problem, we propose a framework that combines image inpainting and semantic segmentation, termed SIS. Our framework adds an image inpainting network and an identical semantic segmentation network in series following an original semantic segmentation network, which can make full use of the two semantic segmentation results to obtain the optimized semantic segmentation results in this scene. Moreover, we combined our framework with Simultaneous Localization and Mapping (SLAM), and conducted experiments on the TUM RGB-D dataset. Experimental results show, the combined SLAM system can construct a semantic octree map with more complete and stable semantic information in dynamic scenes. Semantic segmentation Image inpainting Semantic mapping Dynamic scenes Visual SLAM Liu, Yang aut Guo, Chi aut Zhan, Jiao aut Enthalten in Applied intelligence Springer US, 1991 53(2022), 2 vom: 05. Mai, Seite 2173-2188 (DE-627)130990515 (DE-600)1080229-0 (DE-576)029154286 0924-669X nnns volume:53 year:2022 number:2 day:05 month:05 pages:2173-2188 https://doi.org/10.1007/s10489-022-03487-3 lizenzpflichtig Volltext GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT AR 53 2022 2 05 05 2173-2188 |
language |
English |
source |
Enthalten in Applied intelligence 53(2022), 2 vom: 05. Mai, Seite 2173-2188 volume:53 year:2022 number:2 day:05 month:05 pages:2173-2188 |
sourceStr |
Enthalten in Applied intelligence 53(2022), 2 vom: 05. Mai, Seite 2173-2188 volume:53 year:2022 number:2 day:05 month:05 pages:2173-2188 |
format_phy_str_mv |
Article |
institution |
findex.gbv.de |
topic_facet |
Semantic segmentation Image inpainting Semantic mapping Dynamic scenes Visual SLAM |
dewey-raw |
004 |
isfreeaccess_bool |
false |
container_title |
Applied intelligence |
authorswithroles_txt_mv |
Zhang, Jianfeng @@aut@@ Liu, Yang @@aut@@ Guo, Chi @@aut@@ Zhan, Jiao @@aut@@ |
publishDateDaySort_date |
2022-05-05T00:00:00Z |
hierarchy_top_id |
130990515 |
dewey-sort |
14 |
id |
OLC2080215647 |
language_de |
englisch |
fullrecord |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2080215647</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506143734.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230131s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10489-022-03487-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2080215647</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10489-022-03487-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Jianfeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimized segmentation with image inpainting for semantic mapping in dynamic scenes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Moving objects will obscure static objects in a dynamic scene. When the existing semantic segmentation methods deal with these static objects, there are often missing or errors in segmentation results. To solve this problem, we propose a framework that combines image inpainting and semantic segmentation, termed SIS. Our framework adds an image inpainting network and an identical semantic segmentation network in series following an original semantic segmentation network, which can make full use of the two semantic segmentation results to obtain the optimized semantic segmentation results in this scene. Moreover, we combined our framework with Simultaneous Localization and Mapping (SLAM), and conducted experiments on the TUM RGB-D dataset. Experimental results show, the combined SLAM system can construct a semantic octree map with more complete and stable semantic information in dynamic scenes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semantic segmentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image inpainting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semantic mapping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic scenes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Visual SLAM</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Chi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhan, Jiao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied intelligence</subfield><subfield code="d">Springer US, 1991</subfield><subfield code="g">53(2022), 2 vom: 05. Mai, Seite 2173-2188</subfield><subfield code="w">(DE-627)130990515</subfield><subfield code="w">(DE-600)1080229-0</subfield><subfield code="w">(DE-576)029154286</subfield><subfield code="x">0924-669X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:53</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">day:05</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:2173-2188</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10489-022-03487-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">53</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="b">05</subfield><subfield code="c">05</subfield><subfield code="h">2173-2188</subfield></datafield></record></collection>
|
author |
Zhang, Jianfeng |
spellingShingle |
Zhang, Jianfeng ddc 004 misc Semantic segmentation misc Image inpainting misc Semantic mapping misc Dynamic scenes misc Visual SLAM Optimized segmentation with image inpainting for semantic mapping in dynamic scenes |
authorStr |
Zhang, Jianfeng |
ppnlink_with_tag_str_mv |
@@773@@(DE-627)130990515 |
format |
Article |
dewey-ones |
004 - Data processing & computer science |
delete_txt_mv |
keep |
author_role |
aut aut aut aut |
collection |
OLC |
remote_str |
false |
illustrated |
Not Illustrated |
issn |
0924-669X |
topic_title |
004 VZ Optimized segmentation with image inpainting for semantic mapping in dynamic scenes Semantic segmentation Image inpainting Semantic mapping Dynamic scenes Visual SLAM |
topic |
ddc 004 misc Semantic segmentation misc Image inpainting misc Semantic mapping misc Dynamic scenes misc Visual SLAM |
topic_unstemmed |
ddc 004 misc Semantic segmentation misc Image inpainting misc Semantic mapping misc Dynamic scenes misc Visual SLAM |
topic_browse |
ddc 004 misc Semantic segmentation misc Image inpainting misc Semantic mapping misc Dynamic scenes misc Visual SLAM |
format_facet |
Aufsätze Gedruckte Aufsätze |
format_main_str_mv |
Text Zeitschrift/Artikel |
carriertype_str_mv |
nc |
hierarchy_parent_title |
Applied intelligence |
hierarchy_parent_id |
130990515 |
dewey-tens |
000 - Computer science, knowledge & systems |
hierarchy_top_title |
Applied intelligence |
isfreeaccess_txt |
false |
familylinks_str_mv |
(DE-627)130990515 (DE-600)1080229-0 (DE-576)029154286 |
title |
Optimized segmentation with image inpainting for semantic mapping in dynamic scenes |
ctrlnum |
(DE-627)OLC2080215647 (DE-He213)s10489-022-03487-3-p |
title_full |
Optimized segmentation with image inpainting for semantic mapping in dynamic scenes |
author_sort |
Zhang, Jianfeng |
journal |
Applied intelligence |
journalStr |
Applied intelligence |
lang_code |
eng |
isOA_bool |
false |
dewey-hundreds |
000 - Computer science, information & general works |
recordtype |
marc |
publishDateSort |
2022 |
contenttype_str_mv |
txt |
container_start_page |
2173 |
author_browse |
Zhang, Jianfeng Liu, Yang Guo, Chi Zhan, Jiao |
container_volume |
53 |
class |
004 VZ |
format_se |
Aufsätze |
author-letter |
Zhang, Jianfeng |
doi_str_mv |
10.1007/s10489-022-03487-3 |
dewey-full |
004 |
title_sort |
optimized segmentation with image inpainting for semantic mapping in dynamic scenes |
title_auth |
Optimized segmentation with image inpainting for semantic mapping in dynamic scenes |
abstract |
Abstract Moving objects will obscure static objects in a dynamic scene. When the existing semantic segmentation methods deal with these static objects, there are often missing or errors in segmentation results. To solve this problem, we propose a framework that combines image inpainting and semantic segmentation, termed SIS. Our framework adds an image inpainting network and an identical semantic segmentation network in series following an original semantic segmentation network, which can make full use of the two semantic segmentation results to obtain the optimized semantic segmentation results in this scene. Moreover, we combined our framework with Simultaneous Localization and Mapping (SLAM), and conducted experiments on the TUM RGB-D dataset. Experimental results show, the combined SLAM system can construct a semantic octree map with more complete and stable semantic information in dynamic scenes. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
abstractGer |
Abstract Moving objects will obscure static objects in a dynamic scene. When the existing semantic segmentation methods deal with these static objects, there are often missing or errors in segmentation results. To solve this problem, we propose a framework that combines image inpainting and semantic segmentation, termed SIS. Our framework adds an image inpainting network and an identical semantic segmentation network in series following an original semantic segmentation network, which can make full use of the two semantic segmentation results to obtain the optimized semantic segmentation results in this scene. Moreover, we combined our framework with Simultaneous Localization and Mapping (SLAM), and conducted experiments on the TUM RGB-D dataset. Experimental results show, the combined SLAM system can construct a semantic octree map with more complete and stable semantic information in dynamic scenes. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
abstract_unstemmed |
Abstract Moving objects will obscure static objects in a dynamic scene. When the existing semantic segmentation methods deal with these static objects, there are often missing or errors in segmentation results. To solve this problem, we propose a framework that combines image inpainting and semantic segmentation, termed SIS. Our framework adds an image inpainting network and an identical semantic segmentation network in series following an original semantic segmentation network, which can make full use of the two semantic segmentation results to obtain the optimized semantic segmentation results in this scene. Moreover, we combined our framework with Simultaneous Localization and Mapping (SLAM), and conducted experiments on the TUM RGB-D dataset. Experimental results show, the combined SLAM system can construct a semantic octree map with more complete and stable semantic information in dynamic scenes. © The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022 |
collection_details |
GBV_USEFLAG_A SYSFLAG_A GBV_OLC SSG-OLC-MAT |
container_issue |
2 |
title_short |
Optimized segmentation with image inpainting for semantic mapping in dynamic scenes |
url |
https://doi.org/10.1007/s10489-022-03487-3 |
remote_bool |
false |
author2 |
Liu, Yang Guo, Chi Zhan, Jiao |
author2Str |
Liu, Yang Guo, Chi Zhan, Jiao |
ppnlink |
130990515 |
mediatype_str_mv |
n |
isOA_txt |
false |
hochschulschrift_bool |
false |
doi_str |
10.1007/s10489-022-03487-3 |
up_date |
2024-07-04T03:14:14.591Z |
_version_ |
1803616627817709568 |
fullrecord_marcxml |
<?xml version="1.0" encoding="UTF-8"?><collection xmlns="http://www.loc.gov/MARC21/slim"><record><leader>01000caa a22002652 4500</leader><controlfield tag="001">OLC2080215647</controlfield><controlfield tag="003">DE-627</controlfield><controlfield tag="005">20230506143734.0</controlfield><controlfield tag="007">tu</controlfield><controlfield tag="008">230131s2022 xx ||||| 00| ||eng c</controlfield><datafield tag="024" ind1="7" ind2=" "><subfield code="a">10.1007/s10489-022-03487-3</subfield><subfield code="2">doi</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-627)OLC2080215647</subfield></datafield><datafield tag="035" ind1=" " ind2=" "><subfield code="a">(DE-He213)s10489-022-03487-3-p</subfield></datafield><datafield tag="040" ind1=" " ind2=" "><subfield code="a">DE-627</subfield><subfield code="b">ger</subfield><subfield code="c">DE-627</subfield><subfield code="e">rakwb</subfield></datafield><datafield tag="041" ind1=" " ind2=" "><subfield code="a">eng</subfield></datafield><datafield tag="082" ind1="0" ind2="4"><subfield code="a">004</subfield><subfield code="q">VZ</subfield></datafield><datafield tag="100" ind1="1" ind2=" "><subfield code="a">Zhang, Jianfeng</subfield><subfield code="e">verfasserin</subfield><subfield code="4">aut</subfield></datafield><datafield tag="245" ind1="1" ind2="0"><subfield code="a">Optimized segmentation with image inpainting for semantic mapping in dynamic scenes</subfield></datafield><datafield tag="264" ind1=" " ind2="1"><subfield code="c">2022</subfield></datafield><datafield tag="336" ind1=" " ind2=" "><subfield code="a">Text</subfield><subfield code="b">txt</subfield><subfield code="2">rdacontent</subfield></datafield><datafield tag="337" ind1=" " ind2=" "><subfield code="a">ohne Hilfsmittel zu benutzen</subfield><subfield code="b">n</subfield><subfield code="2">rdamedia</subfield></datafield><datafield tag="338" ind1=" " ind2=" "><subfield code="a">Band</subfield><subfield code="b">nc</subfield><subfield code="2">rdacarrier</subfield></datafield><datafield tag="500" ind1=" " ind2=" "><subfield code="a">© The Author(s), under exclusive licence to Springer Science+Business Media, LLC, part of Springer Nature 2022</subfield></datafield><datafield tag="520" ind1=" " ind2=" "><subfield code="a">Abstract Moving objects will obscure static objects in a dynamic scene. When the existing semantic segmentation methods deal with these static objects, there are often missing or errors in segmentation results. To solve this problem, we propose a framework that combines image inpainting and semantic segmentation, termed SIS. Our framework adds an image inpainting network and an identical semantic segmentation network in series following an original semantic segmentation network, which can make full use of the two semantic segmentation results to obtain the optimized semantic segmentation results in this scene. Moreover, we combined our framework with Simultaneous Localization and Mapping (SLAM), and conducted experiments on the TUM RGB-D dataset. Experimental results show, the combined SLAM system can construct a semantic octree map with more complete and stable semantic information in dynamic scenes.</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semantic segmentation</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Image inpainting</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Semantic mapping</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Dynamic scenes</subfield></datafield><datafield tag="650" ind1=" " ind2="4"><subfield code="a">Visual SLAM</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Liu, Yang</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Guo, Chi</subfield><subfield code="4">aut</subfield></datafield><datafield tag="700" ind1="1" ind2=" "><subfield code="a">Zhan, Jiao</subfield><subfield code="4">aut</subfield></datafield><datafield tag="773" ind1="0" ind2="8"><subfield code="i">Enthalten in</subfield><subfield code="t">Applied intelligence</subfield><subfield code="d">Springer US, 1991</subfield><subfield code="g">53(2022), 2 vom: 05. Mai, Seite 2173-2188</subfield><subfield code="w">(DE-627)130990515</subfield><subfield code="w">(DE-600)1080229-0</subfield><subfield code="w">(DE-576)029154286</subfield><subfield code="x">0924-669X</subfield><subfield code="7">nnns</subfield></datafield><datafield tag="773" ind1="1" ind2="8"><subfield code="g">volume:53</subfield><subfield code="g">year:2022</subfield><subfield code="g">number:2</subfield><subfield code="g">day:05</subfield><subfield code="g">month:05</subfield><subfield code="g">pages:2173-2188</subfield></datafield><datafield tag="856" ind1="4" ind2="1"><subfield code="u">https://doi.org/10.1007/s10489-022-03487-3</subfield><subfield code="z">lizenzpflichtig</subfield><subfield code="3">Volltext</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_USEFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SYSFLAG_A</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">GBV_OLC</subfield></datafield><datafield tag="912" ind1=" " ind2=" "><subfield code="a">SSG-OLC-MAT</subfield></datafield><datafield tag="951" ind1=" " ind2=" "><subfield code="a">AR</subfield></datafield><datafield tag="952" ind1=" " ind2=" "><subfield code="d">53</subfield><subfield code="j">2022</subfield><subfield code="e">2</subfield><subfield code="b">05</subfield><subfield code="c">05</subfield><subfield code="h">2173-2188</subfield></datafield></record></collection>
|
score |
7.399678 |